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Abstract 

 

The Cairo Genizah is a large collection of medieval fragments of manuscripts, discovered in 

the late 19th century. Most of the fragments were found in a poor state of conservation and 

rarely bound together as in their original state. Friedberg Genizah Project (FGP) engaged in 

digitalizing the complete corpus of the Genizah collection. The FGP's Computerization Unit is 

working on automatically finding manuscripts that once belonged to the same work by testing 

pairs of images based on information they extract from images. The term “join” designates a 

pair of images containing fragments from the same book. Newly discovered joins need to be 

validated by expert domains.  

The goal of this project is to integrate the effort of the Friedberg Genizah Project (FGP) 

Computerization Unit in discovering "joins" with data mining techniques to extract useful 

knowledge from data. A dataset was derived consisting of the validated "joins" immersed in a 

multitude of "non joins", random pairs of images. Several feature selection methods are 

considered to: 1) weight the importance of attributes in discriminating a “join” from a “non join” 

and 2) to find useful subsets of attributes for a specific classification purpose. Several search 

techniques to traverse the space of feature subsets are considered, such as Best–First 

Forward Selection, Best–First Backward Elimination and Genetic Algorithm. Several 

supervised machine learning algorithms are employed and compared in terms of 

comprehensibility of results and estimated accuracy: decision tree C4.5, rule–learner 

RIPPER, ensemble classifiers obtained with bagging and boosting techniques.   
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Chapter 1– Introduction 

1.1 Application Domain – Genizah  

 

The Cairo Genizah is a collection of approximately 350,000 medieval fragments of 

manuscripts that was discovered in the late 19th century in Ben Ezra Synagogue in Old Cairo. 

The material found have an immense impact in scholars involved with studies in “Bible, 

rabbinic, liturgy, history, philosophy”, and daily life in Mediterranean basin during the Middle 

Ages (Lior et al., 2011). However, the collection is nowadays spread all around the world in 

about 75 libraries and private collections (Wolf, et. al., 2011). Moreover, the state of 

conservation can be extremely poor. For these reasons, it is scholarly extremely demanding 

grouping together fragments that once belonged to the same work.  

 

The Friedberg Genizah Project (FGP) aims at advancing Genizah research by digitalizing the 

complete corpus of the Genizah collection. The availability of such an important collection of 

digital images lead the FGP's Computerization Unit and researches from the Blatvanik School 

of Computer Science (Tel Aviv) to develop an algorithm that would automatically test pairs of 

images to check whether they origin from the same book or not, i.e. whether they are "joins" 

or "non joins”. The algorithm decides whether a pair of images represents a “join” by 

computing several similarity scores, such as similarity in handwriting, content, script styles 

and physical measurements. Each discovered “join” needs to be validated by domain experts. 

The algorithm sometimes detects as “join” a pair of images that are not truly joins (False 

Positives), making the validation process too costly.  

 

A “join” is either a set of two or more fragments belonging to the same manuscript (codex-join) 

or a set of fragments written by the same scribe but not necessarily belonging to the same 

manuscript (scribe-join). In what follows, unless otherwise specified, the term join will refer to 

codex-join. 
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Example of a discovered “join”, matching two very damaged fragments of manuscript 

(Passages from the Second Book of Chronicles, chapters 20 and 21) 

 

1.2 Purpose of the Thesis 

 

The goal of this project is to integrate the effort of the Friedberg Genizah Project (FGP) 

Computerization Unit in discovering "joins" with data mining techniques to extract useful 

knowledge from data. 

 

The dataset used in this project was derived by randomly matching two images to produce a 

"non join" and by generating all possible combinations of pairs of images from the same book. 

The proportion "join"/"non join" was kept unbalanced 1:9, although in the reality the proportion 

is way more imbalanced (there are 61,249,825,000 possible matches between pairs of  

images). 

 

The purpose of this thesis is twofold: to gain a better insight on how to define the concept 
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"join", and evaluate which attributes are more relevant/useful in discriminating a "join" from a 

"non join". This would help tuning efficiently the algorithm used to discover new joins. For this 

reason, I compare several feature selection methods and supervised learning algorithms.  

 

Feature selection (FS) searches for a good subset of features that would maximizes the ability 

of the system to classify new instances (Bins, Draper, 2001) without loosing important 

information. FS methods fall into two broad categories: filter methods, wrapper methods 

(Kohavi, John,1997). The difference between the two approaches is that filters rank attributes 

or subsets of attributes independently of the classifier to be used afterwards, whereas the 

wrapper method uses the learning algorithm of interest to evaluate the usefulness of the 

candidate attributes subsets.  

 

Filter methods usually produce a ranking of variable importance, based on general 

characteristics in the training set. They can be further classified as univariate and multivariate 

filters, depending on whether they assess features individually or taken in groups. There are 

several metrics that can be used to rank attributes or subsets. In this project, metrics used are 

based on Information Theory, chi-squared test and correlation measure.  

 

Wrapper methods “perform a search over the space of all possible subsets of features, 

repeatedly calling the induction algorithm as a subroutine to evaluate various subsets of 

features” (Forman, G., 2003, pp 1291). The wrapper approach is called this way because the 

feature selection algorithm is “wrapped” around the classifier (Kohavi, John, 1997) of interest. 

 

In this project, FS is applied to: 1) rank input variables individually, based on several metrics, 

2) check whether there are redundant features, and 3) find whether there are input variables 

that are irrelevant by themselves but useful when taken in context with others (feature 

interaction). 

 

Several classification algorithms were applied to: 1) evaluate the goodness of the features 

subsets returned by the different feature selection methods, 2) to see which technique gives a 

better insight on the mapping between input attributes and the class, and 2) to see which 

technique is more likely to be accurate in its prediction. The supervised learning algorithms 

used were rule–learner RIPPER, a decision tree C4.5 and ensemble classifiers, obtained by 

combining several versions of C4.5 via bagging and boosting. 
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In deciding which algorithm to include in this project, I was mainly driven by the need of 

getting comprehensible results. For example, in a pre-experimental phase I tried several rule–

learners, such as PRISM (Cendrowska, 1987) and PART (Frank, Witten, 1998). Although 

these algorithms were more accurate compared to RIPPER, I decided to use RIPPER 

because it yielded more compact and expressive rules. For the same reason, although the 

ensemble classifier Random Forest (Breiman, 2001) performed better than bagging and 

boosting, It was not chosen because I could not view the model induced.  

1.3 Thesis Overview 

 

Chapter 2–Genizah. The chapter provides a brief overview of the Genizah collection. 

 

Chapter 3–Feature Selection. Section 3.1 presents an overview of feature selection 

problem. Section 3.2 reports a literature review on the subject. Section 3.3 focuses on the two 

main categories filter and wrapper. Univariate filters are treated in subsection 3.3.1.1, 

whereas multivariate filters are treated in subsection 3.3.1.2. The final section 3.3.2 is about 

wrappers and search methods that can be used to traverse the space of candidate subsets of 

attributes.   

 

Chapter 4–Classification. Section 4.1 presents an overview of the classification task in data 

mining. The subsequent sections treats the supervised learning algorithms included in this 

project: Section 4.2 is about decision trees, section 4.3 about rule-learners that employ a 

separate–and–conquer strategy, such as RIPPER algorithm, section 4.4 about the ensemble 

classifiers bagging and boosting. 

 

Chapter 5–Experiment Design. Section 5.1 gives an overview of the dataset used in this 

project and how it was derived (Section 5.1.2). The remaining two sections are about the 

experimental design: Section 5.2 presents how filter and wrapper methods were applied, 

whereas section 5.3 reports how the different classifiers were used to evaluate the goodness 

of results from feature selection. 

 

Chapter 6–Experiment Results. The chapter reports the results of feature selection methods 

and how they were evaluated using several classifiers. Section 6.1 presents results from filter 
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methods, more in detail, subsection 6.1.1 reports the ranking from the univariate filters 

whereas subsection 6.1.1.1 the evaluation of the results, subsection 6.1.2 reports results of 

running multivariate filter, while subsection 6.1.2.1 reports its evaluation. Section 6.2 reports 

results from running wrapper methods and subsection 6.2.1 its evaluation. Section 6.3 

presents a summary of the results. 

 

Chapter 7. The chapter gives a conclusion to this thesis. 
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Chapter 2 – Genizah 

 

The term Cairo Genizah is currently used to describe a collection of approximately 350,000 

fragments of manuscripts that were found in the storage room (genizah) of the Ben Ezra 

Synagogue in the neighborhood of Al-Fusṭāṭ (Old Cairo). According to the Jewish legal 

principle that prevents the burning of any written piece containing the name of God, the Jews 

of Old Cairo used to store worn pages of manuscripts in paper or vellum in the attic of the Ben 

Ezra Synagogue, without distinguishing between religious and secular material. The 

chronological span of the Genziah material lies between the 5th/6th century to the 19th 

century, when the storage room was discovered, opened, emptied, and the material it 

preserved was taken to various destinations. The larger collection of Genizah material 

(roughly 190,000 fragments) was brought to Cambridge University Library thanks to the efforts 

of clairvoyant scholars like Solomon Schechter and Charles Taylor, while smaller collections 

of fragments are now found in over 50 libraries all over the world. The majority of the 

manuscripts is datable from between the 10th-11th century to the half of the 13th century and 

is mainly written on paper and vellum. The languages represented in the fragments are 

Hebrew, Judaeo-Arabic (the form of middle Arabic written in Hebrew letters that was used by 

Jews in Islamic lands), Arabic, Aramaic, Ladino (Judaeo-Spanish), Judaeo-Persian, Yiddish, 

Coptic and Ethiopic. Their content is the most varied, spanning from religious texts (in 

particular fragments of Bibles, Talmudic treatises, commentaries and so on), to juridical and 

literary works and to very precious pieces of evidence (documents, contracts, private letters, 

notes) regarding the daily life in Medieval Cairo. When the Genizah fragments arrived to 

Western and Middle Eastern Libraries, their state of conservation was extremely poor: leaves 

were creased, covered in dirt and stuck together in bundles; pages once belonging to the 

same manuscript where scattered around and ended up in different libraries; in many cases, 

fragments once belonging to the same page of a work, a letter or a document, were then 

catalogued as single items regardless of their original context. More than half a century of 

conservation work lead to the actual state in which the fragments – at least the ones in 

Cambridge University Library - are safely preserved in melinex polyester sheeting and bound 

in volumes. A century of scholarly efforts lead to the almost complete description of the 

content of each single fragments, but it is still very hard to discover whether different 

fragments and leaves once belonged to a single larger manuscript.  
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The Genizah chamber in the Ben Ezra Synagogue (Al-Fustat, Cairo) 
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Chapter 3 – Feature Selection 

 

3.1 Introduction 

 

Data dimensionality reduction (DDR) is drawn from the fields of pattern recognition and 

statistics  and aims at reducing the hypothesis search space, improving the accuracy of 

classifiers and providing a better understanding of the knowledge extracted (Wang, Fu, 2005). 

DDR can be classified in two general categories: feature extraction and feature selection (FS). 

Feature extraction generates artificial features from existing ones. An example of feature 

extraction is Principal Component Analysis (PCA). PCA produces a number of new attributes 

(principal components) that account for most of the variance in the existing variables. 

However, these new functions of the original features are not easy to interpret (Dash, Liu, 

1997). 

FS, on the other hand, looks for a subset of the existing features that would maximizes the 

ability of the system to classify new  instances (Bins, Draper, 2001) without loosing important 

information.  

Selecting a good subset of relevant attributes can improve not only the speed of the classifier  

but also it accuracy and the comprehensibility of results (Dash, Liu, 1997; Yu, Liu, 2003; 

Guyon, Elisseeff, 2003; Liu et al., 2002). Another important advantage of feature selection is 

that it allows a better insight on the process that produced data (Dash, Liu, 1997; Guyon, 

Elisseeff , 2003). 

 

The basic idea in feature selection is to detect irrelevant and/or redundant features as they 

harm the learning algorithm performance (Moore, Lee, 1994). There is no unique definition of 

relevance, however it has to do with the “discriminating ability of a feature or a subset to 

distinguish the different class labels” (Dash, Liu, 1997, p. 135). However, as pointed out in 

(Guyon, Elisseeff, 2003), an irrelevant variable may be useful when taken with others and 

even two irrelevant variables that are useless by themselves can be useful when taken 

together. 

FS methods fall into three broad categories: filter methods, wrapper methods (Kohavi, John, 

1997), and embedded methods. Filter methods are independent of the inductive algorithm to 
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be used afterwards and they rely on general characteristics of the training data. Wrappers use 

the classifier to be used afterwards as a black box to evaluate the usefulness of subsets of 

features. Embedded methods are particular machine learning algorithms that perform variable 

selection implicitly during the training phase, for example decision trees and rule–learner 

algorithms such as RIPPER.  

The problem of finding an optimal subset of features is computationally infeasible in most real-

world problems (Vafaie, De Jong, 1993; Dash, Liu, 1997; Kohavi, John, 1997). In fact, for a 

dataset consisting of n features, the order of the search space is O(2!). This makes an 

exhaustive search too costly and impractical. For this reason, a heuristic search or random 

search is used to traverse the space of competing features subsets. In the heuristic search, 

the order of the search space is usually O(!!) or less, whether in random search, although the 

search space is O(2!), fewer subsets are evaluated (Dash, Liu, 1997). 

 

Areas in which feature selection play an important role are text classification, gene expression 

array analysis, and combinatorial chemistry (Guyon, Elisseeff, 2003; Forman, 2003). 

3.2 Literature Review 

 

Kira and Rendell (1992) introduced the method Relief. Relief is based on a statistical. It 

weights features drawing its inspiration by the instance-based learning algorithms. The 

algorithm first requires the user to set a number of instances to be randomly drawn from the 

training set. Then it assigns a weight, initialized to zero at the beginning, to all attributes. For 

each instance in the sample, say x,  it looks for its Near Hit, i.e.  the instance closest to it 

(based on the Euclidean distance) and that has its same class and the Near Miss, i.e. the 

instance closest to it that has a different class value. An attribute becomes more relevant, and 

its weight is increased, if it assumes different values for x and the Near Miss, and is made less 

relevant if its value is different for x and Near Hit. This process is repeated for all instances in 

the sample. Finally, the algorithm selects a subset of attributes having weights greater than a 

specified threshold.  

Relief algorithm is robust against noise, it requires O(n) to find a good subset, where n is the 

sample size, it deals with both numerical and categorical attributes. However, it fails in 

detecting redundant features and it works only with binary classes. 

 

Almuallim and Dietterich (1992) introduced a new algorithm: Focus. Focus algorithm performs 
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an exhaustive search through the space, looking for the minimal subset of features that is 

sufficient to classify all instances in the training data. The criterion used to evaluate a subset 

is the consistency. The disadvantages of this method are its sensitivity to noise and the 

exponential explosion of the search space when there are more than 25-30 features (Koller, 

Sahami, 1996).  

 

Vafai and De Jong (1992, 1993) investigated the importance of feature selection to improve 

the performance of rule induction algorithms in the domain of image processing and proposed 

using genetic algorithm to explore the space of all subsets of features.  

 

Cardi (1993) proposed a FS method based on the use of a decision tree (decision tree 

method DTM). The method consists in running a decision tree over the training data and in 

retaining only the attributes that appear in the pruned tree. This approach aimed at improving 

the performance of nearest-neighbor algorithm.  

 

John, Kohavi and Pfleger (1994) provided a formal definition of relevant/irrelevant features. 

More importantly, they proposed that the selection of a good subset of features should 

depend on the induction algorithm to be used afterwards. 

 

Langley (1994) presented an overview of feature selection methods. 

 

Moore and Lee (1994) introduced the schemata search, "a new method for quickly finding 

families of relevant features". 

 

Koller and Sahami (1996) addressed both theoretical and practical aspects of feature 

selection. They proposed a filter based on Information Theory. They proved experimentally 

that their method was efficient in detecting irrelevant and redundant attributes, it dealt well 

with noise and, being a filter method, it did not incur in the computational cost typical of a 

wrapper method.  

 

Dash and Liu (1997) gave an overview of many existing feature selection methods from the 

1970s to that moment. The authors identified four steps in a typical feature selection method, 

i.e. generation, evaluation, stopping criteria and validation. They classified the evaluation 

functions in five categories: distance, information (or uncertainty), dependence, consistency, 
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and classifier error rate. Moreover, they group the generation procedures into three groups: 

complete, heuristic, and validation approaches. 

Blum and Langley (1997) concentrated on both selecting relevant attributes and relevant 

examples. 

 

Kohavi and John (1997) introduced the wrapper method. In the wrapper approach, the feature 

selection algorithm is a wrapper around the induction algorithm. The algorithm searches for a 

good subset using the estimated accuracy of the classifier itself as evaluation function. In fact, 

according to the authors, FS should consider how that specific classifier and that particular 

training set (domain) interact. The accuracy of the classifier was evaluated using a 5–fold 

cross–validation.  

 

Das (2001) investigated the advantages and limitations of filter and wrapper methods for 

feature selection and proposed a new hybrid algorithm, which they claimed being competitive 

with the wrapper methods but much faster.  

 

Xing et al. (2001) proposed a hybrid method to solve the problem of feature selection in the 

field of molecular biology. 

 

Forman (2003) presented an empirical comparison of twelve feature selection methods in the 

context of text classification. The author introduced a new metric for variable ranking: Bi-

Normal Separation. 

 

Guyon and Elisseeff (2003) presented an excellent introduction to variable selection. 

3.3 Filter–Wrapper 

 

In this project, I will focus on filters and wrappers methods.  

Filters rank attributes or subsets of attribute without invoking any classifier. Wrappers need to 

call the same classifier as many times as the number of candidates it evaluates. For this 

reason, filter methods are much faster and they yield a more general result than wrapper 

methods. They are simple and scalable (Guyon, Elisseeff, 2003). However, wrapper methods 

return a subset that is particularly appropriate for that classifier and that training set, resulting 
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in a better performance. 

3.3.1 Filter 

 

Filter methods can be divided into two subcategories: univariate methods and multivariate 

methods, depending on whether they assess features individually or in subsets. Univariate 

and multivariate filters are also known as weighting algorithms and subset search algorithms 

(Yu, Liu, 2003). 

Several metrics can be used to assess the worthiness of a single features. Some popular 

metrics are entropy (or Information Gain), Chi–Squared test, Gain Ratio. Univariate filter can 

help detecting irrelevant features but can do nothing against redundant features. Redundant 

features adversely affect the speed and the accuracy of learning algorithms. To overcome the 

limitations of univariate filters, Hall (1999) proposed a multivariate filter (CFS) that would 

detect not only irrelevant features but also redundant ones. The metric used by CFS is 

correlation. 

3.3.1.1 Univariate Filter 

 

Here are presented two univariate filters used in the project. One is based on Information 

Gain metric and the other on the Chi–Squared test. 

3.3.1.1.1 Information–based Filter 

 

This kind of filters are based on the information–theoretical concept of entropy, a measure of 

the uncertainty of a random variable (Yu, Liu, 2003). In general, the entropy of a random 

variable X is defined as  

! ! = − ! !! log! ! !!
!

 

and the entropy of X after observing values of another random variable Y is defined as  

!(!|!) = − (!(!_!))    (! !! !! log!(!(!_!|!_!))
!!

  

where !(!!) is the prior probabilities for all values of  !, and ! !! !!  is the posterior 

probabilities of X given the values of Y (Yu, Liu, 2003). 

The quantity by which the entropy of X decreases thanks to the additional information about X 
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provided by Y is called the information gain or entropy and is given by 

!"(!|!) =   !(!) − !(!|!).  

 

This type of filter evaluate the information gain from a feature, i.e. the difference between the 

prior uncertainty and the expected posterior uncertainty about the class using that feature. It 

“measures the decrease in entropy when the feature is given versus absent” (Forman, 2003). 

 

3.3.1.1.2 Chi-squared Filter 

 

The chi–squared method assesses features individually by computing their chi-squared 

statistic with respect to the class. This test is used to test whether there is a enough statistical 

evidence at a given significance level (say 0.05) to consider two categorical variables 

independent from each other. The method requires numerically-valued attributes to be 

discretized.  

This approach ranks the !!values with the largest one on top, as the larger !! value, the more 

important the feature is (Liu et al, 2002). Chi–squared test is a test that evaluates the distance 

from the expected distribution of a feature if that feature is assumed independent from the 

class (Forman, 2003). 

What follows is a general overview of the chi–squared test. 

In general, to compute the test between a variable A with r levels and a variable B having c 

levels, we need to 1) state the hypotheses, 2) specify the significance level, 3) analyze data, 

4) interpret results. 

The null hypothesis H0 states that the two variables A and B are independent, whereas the 

alternative hypothesis  Ha states that the two variables are not independent. 

 H0: Variable A and Variable B are independent.  

  Ha: Variable A and Variable B are not independent. 

Usually a significance level of 0.05 or 0.01 is used. 

Analyzing the data involves computing the degree of freedom, the expected frequencies, the 

test statistic !!, and the P–value associated with !!  statistic.  

Degrees of freedom is computed as ! − 1 ! − 1 . 

Expected frequencies need to be computed for each level of one variable at each level of the 
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other variable. The expected frequency for level x of variable A and level y for variable B is 

given by the product between the number of observations at level x of variable A and the 

number of observations at level y of variable B, divided by the total number of observations. 

Once !×! expected frequencies have been computed, the test statistic !! is computed as 

follows: 

- For each level x of variable A at level y of variable Y, compute the difference between the 

observed and expected count for this combination of levels, square it, and divide it by the 

expected frequency. 

- Compute the sum of the values obtained in the previous step. 

- Compute the P–value associated to the !! test with that degree of freedom. 

 

If the P-value is less than the significance level chosen, then there is enough statistical 

evidence to reject the null hypothesis, otherwise, we cannot reject it. 

3.3.1.2 Multivariate Filter – Correlation–Based Filter (CFS) 

 

CFS is based on correlation measures or dependence measures. A correlation measure 

evaluates the ability to predict the value of one variable knowing the value of another variable 

(Dash, Liu, 1997). The method evaluates the worth of subset of attributes based on the 

criterion that a good subset of attributes contains features "highly correlated with the class, yet 

uncorrelated with each other" (Hall, 1999). A high inter–correlation between input variables 

indicates redundancy and redundancy harms both the learning time and the accuracy of 

classifiers. Thus, it may happen that a highly relevant feature is not included in the subset 

because it is redundant (Guyon, Elisseeff, 2003; Kohavi, John, 1997). 

The method computes a matrix of feature–class correlations and feature–feature correlations. 

For each subset of attributes S being evaluated and containing k features, a merit metric is 

computed as  

!"#$%& =   !
!"#

(! + !(! − 1)!"")
 

,   

where rcf is the average feature–class correlation, and rff is the average feature-feature inter–

correlation (Hall, 1999). Thus, the higher the average correlation feature–class and the lower 

the average correlation feature–feature, the higher the merit of the subset. 
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3.3.2 Wrapper 

 

Wrapper methods evaluate subset of attributes based on their usefulness to a given classifier. 

Wrappers are conceptually very simple. To use this feature selection technique, one needs to 

decide: 1) how to search the space of all possible subsets of variables and how to halt it, 2) 

how to estimate the accuracy of the classifier used called by the wrapper, and 3) which 

classifier to use as a black box (Guyon, Elisseeff, 2003). The accuracy of the classifier used 

as a black box is usually estimated using the hold-out method or cross-validation.  

This section reviews some possible searches that can be used to traverse the space of 

feature subsets.  

3.3.2.1 Search methods 

 

An exhaustive search is computationally infeasible even for datasets with a small number of 

attributes. In fact, this would mean running 2! times the classification algorithm on the 

dataset, where n is the number of attributes.  

3.3.2.1.1 Greedy Search 

 

The simplest search technique is the hill–climbing (greedy) forward selection or backward 

elimination. When the forward selection is used, attributes are progressively included into 

larger and larger subsets, whereas when backward elimination is used, one starts with the 

entire set of variables and progressively removes the least promising one. When a greedy 

search is applied, one never revisits former decisions in the light of new findings (Guyon, 

Elisseeff, 2003) and the search stops whenever adding or removing a feature decreases the 

estimated accuracy of the classifier. Thus, the search stops in a local optimum.  

The advantage of starting from an empty set of attributes is that it is less computationally 

expensive. In fact, running the classifier on dataset with few attributes is much faster than 

running it starting from the entire set of attributes. However, starting from the entire set of 

attributes and trying to remove one at a time allows to capture higher order (more than two) 

interacting features, i.e. features that might be irrelevant when taken alone but that become 

useful when taken together. Forward selection is to be preferred if one suspects that only few 

variables are relevant and backward elimination is to be preferred if one suspects that only 

few variables are expected to be irrelevant (Moore, Lee, 1994). 

Alternative searches are best–first, branch–and–bound, simulated annealing, genetic 
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algorithms, schemata–search, beam–search, race, etc.  

In my project I focused on best–first search and genetic algorithm. 

 

3.3.2.1.2 Best–First Search 

 

Best–first search selects the most promising node encountered so far that has not been 

expanded (Kohavi, John,1997). This search doesn't terminate when the performance starts to 

drop but keeps a list of all attribute subsets evaluated so far, sorted in order of the 

performance measure, so it can revisit an earlier configuration. Although best–first search is 

less prone to remain stuck in local optima than greedy forward selection, it is not clear 

whether it is better for feature selection (Kohavi, John,1997).  

3.3.2.1.3 Genetic Search 

 

Genetic algorithms are optimization techniques that mimic the evolutionary law of "survival of 

the fittest".  

When applying genetic algorithm to the search of an optimal feature subset, a single subset 

can be viewed as an individual within the population. Subsets of features can be represented 

as binary strings (Moore, Lee, 1994): if the ith variable is included in the subset, then the 

position i in the string will assume value 1, otherwise 0. For example (1,1,0,0) denotes a 

subset in which only the first two variables are included.  

Individuals are evaluated by using a fitness function. Pairs of high performing individuals are 

selected for mating and the resulting pairs of offspring (partially or completely) replace the old 

generation. The idea is to produce new solutions that retain many of the good features of their 

parents and eventually perform better. The population is maintained of approximately the 

same size (Vafaie, De Jong, 1993).  

The offspring are produces using two main genetic operators: crossover and mutation:  

⁃ Crossover randomly selects a point within the strings representing the parents and 

swaps all the bits after that point between the two.  

⁃ Mutation randomly changes one or more bit of an individual to introduce perturbation 

in the population. Perturbation allows to explore new areas in the search space and 

help avoiding remaining trapped in a local optimum. Thus mutation prevents search 

stagnation.  

One need to specify a crossover rate, i.e. the probability that two individuals will swap part of 
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their encoding and the mutation rate, i.e., the chance that a bit or more within an individual will 

be flipped.  

One need to tune the parameters: 

⁃ crossover rate, value close to 1 allows a large number of offspring (the choice is not 

critical) and, 

⁃ the mutation rate, which is very critical. An optimal choice of the mutation rate will 

allow the search to explore intensively the good regions, avoiding remaining trapped 

in local optima. When it is set larger than 0.25 it will be difficult to explore adequately 

the good regions, and the search will perform more like a random search; when it is 

set too small, the search may not be enough randomized to escape local optima. A 

reasonable value is 0.01. 
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Chapter 4 – Classification 

4.1 Introduction 

 

Predictive models can be grouped in two major groups: classification and regression models. 

Both aim at building models that predicts the value of a variable knowing the values of other 

variables. Both models accept in input a set of training data. Each training instance has 

several attributes, one of which is the variable to be predicted. In classification, this variable is 

categorical and it is called class variable, in regression the variable is real–valued and is 

known as dependent variable. The remaining attributes are known as features, attributes, 

input variables, predictors, explanatory variables, etc. Predictive models learn, using the 

training data at hand, a mapping from the input variables to the dependent variable (Hand et 

al.,  2001). The resulting model is then used to predict the value of the dependent variable for 

a new instance of which all the independent variables are known. 

Classification has been successfully applied to many areas, such as “scientific experiments, 

medical diagnosis, fraud detection, credit approval, target marketing” (Nong, 2003), computer 

and network system security (Pietraszeka, 2005), etc. 

4.2 Decision Trees 

 

Decision Trees are a popular family of supervised learning algorithms. They origin from the 

field of decision theory and statistics (Rokach, Maimon, 2005).  

 

Decision trees are directed graphs with a root, internal nodes, branches and leaves (also 

known as terminal nodes or decision nodes). All internal and terminal nodes have exactly one 

incoming branch. The root and the internal nodes have two or more branches leading to their 

child nodes.  

 

The process of building a tree model from the training set is known as tree induction or tree 

growing. The most commonly used approach is the greedy top–down method. The basic idea 

is to recursively “test on attributes to partition the training data into smaller and smaller 

subsets until each subset contains instances that belong to a single class” (Quinlan, 1990). 

A region of the instance space is associated to each node. The general algorithm starts with 
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the entire training set and an empty model. It selects a “best” attribute and generates a node 

for it. The algorithm performs a test on the attribute’s values and, based on the outcome of 

this test, it partitions the instances at that node in two or more subspaces that are associated 

to newly created child nodes. This process iterates recursively at each node. The tree 

induction stops when all instances in a node belong to the same class or if it is not worth to 

continue partitioning the training data further. Each leaf node has associated a class label, 

which is the (majority) class of the instances that are associated to that node. 

 

The choice of the best attribute at each node is mainly based on the class distribution of the 

records before and after the test (Pang-Ning, et al., 2005). Most of the measures used are 

based on the difference between the degree of impurity at the parent node and the weighted 

sum of the degrees of impurity at the child nodes after splitting. The weights are given by the 

relative proportion of instances at the child nodes. The bigger the difference, known also as 

gain, the better the split.  

One common measure of impurity at node t is the entropy, defined as: 

!"#$%&'   ! = −    ! ! ! log!(! ! ! )
!

!!!

 

where ! ! !  is the proportion of instances at node t that belong to the class i (i=1,..,c).  

Other impurity measures are Gini Index and Classification error (Pang-Ning, et al., 2005).  

When the measure of impurity is entropy, gain is also known as information gain. 

 

To classify a new instance, this is propagated down the tree and it is labelled accordingly to 

the class label in the leaf it reaches. 

 

Many aspects relative to building an optimal decision tree were proved to be intractable 

(Murthy, 1998). For example, Hyafil and Rivest (1976) proved that the problem of finding an 

optimal binary tree, where optimal refers to a tree with the minimum number of tests to 

classify an object, was NP–complete. Tu and Chung (1992) proved formally that the problem 

of finding the optimal decision tree with the smallest size is NP–complete. Thus, all existing 

algorithms accept a suboptimal decision tree.  

 

It is important to address the issue of overfitting, a situation that arises when one uses an 

overly complex model that works perfectly on the training set and that performs poorly on new 

and unseen set. There are two general approaches to tackle this issue: prepruning and 
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postpruning. Prepruning stops growing a tree as soon as a stopping criteria is met. Typical 

stopping criteria are: 1) The maximum tree depth has been reached, 2) the minimum number 

of instances in a node is reached, 3) the best splitting criteria is below an acceptable 

threshold. However, it is not easy to tune efficiently these early stopping criteria. For this 

reason, most of learning algorithms perform a postpruning, i.e. they induce a complex model 

and then they simplify it to the point where it is more likely that the tree models patterns in the 

underlying data rather than random noise in the training set. 

 

Rokach and Maimon (2005) delineated the advantages and disadvantages of decision trees in 

their survey on decision trees algorithms. The advantages are: 1) decision trees are easy to 

understand (“self–explanatory”), 2) they accept both numerical and categorical input variables, 

3) they are nonparametric, they do not make any assumption about the data and the class 

distribution, 4) they are robust against noise, and 5) they can handle missing values. The 

disadvantages are: 1) most of the decision tree algorithm require a categorical class, 2) 

decision trees are unstable algorithms, i.e. small perturbation in the training set can lead to a 

completely different model, 3) because of the recursive partitioning of the training data, it may 

happen that at the lower levels of the tree the number of instances is too little to make 

statistically relevant assumptions about the class (data fragmentation), and 4) the replicated 

subtree problem. This problem is due to the fact that decision trees cannot express in a 

compact way disjunctions, as  they test one attribute at a time. The result is that they may be 

way more complex than necessary. Please refer to Appendix B for an example. 

 

There are several decision trees algorithms, such as CHAID (Kass, 1980), CART (Breiman et 

al., 1984), ID3 (Quinlan, 1986), C4.5 (Quinlan, 1993). 

 

In my project I focus on C4.5 (Quinlan, 1993). 

 

Quinlan’s C4.5 (1993) is an evolution of his ID3 (1986) algorithm. Both algorithms “have 

served as the primary decision trees” in the machine learning community (Neville, 1999). 

C4.5 performs multi–way splits on input variables. The metric used to select the best attribute 

is the gain ratio, given by the reduction in entropy normalized by the entropy of the split. The 

normalization is done to overcome the fact that information gain tends to favor attributes with 

many distinct values. The algorithm handles missing values and numeric attributes. C4.5 

performs postpruning based on two operators: subtree replacement and subtree raising 

(Witten, Frank, 2005). In the first case, a node is substituted with a leaf, in the second case 
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with another subtree below it. To decide whether to prune a node or not, the algorithm 

compares the error that would be expected on independent data when the node is left and 

when the node is substituted. A typical way to estimate these errors would be to retain some 

training instances for validation purpose. However, this would cause building a tree based on 

fewer data. C4.5 uses the training set itself to estimate this error and uses a pessimistic 

estimate of the error by taking the upper confidence limit rather than considering the 

confidence range.  

 

4.3 Rule–Learners 

 

Rule–learners induce a set of rules from a training data. Training data consists of labeled 

data, i.e. "positive" and "negative" examples of a target concept (class). In this project, 

positive examples are “joins”, negative ones are “non–joins”. Rules are chosen such that they 

will discriminate well on unseen data. These learners try to present the knowledge gained 

from the data in a way that facilitates both interpretation and taking decision (Wang, Fu, 

2005). 

 

In this project I will focus on the family of rule–learners algorithms that adopt the separate–

and–conquer strategy, also known as covering algorithms (Pagallo, Haussler, 1990). In 

particular, I will focus on the RIPPER algorithm (Cohen, 1995). From now on I will use the 

terms covering algorithm and separate–and–conquer algorithm interchangeably.  

 

The general separate–and–conquer algorithm induces one rule at a time. Each rule covers a 

portion of the training data. It is called separate–and–conquer algorithm because training 

examples that were covered by the last induced rule are removed (separated) from the 

training set before a new rule is induced to cover (conquer) new training data. The goal is to 

describe almost all of the positive examples in the training data and almost none of the 

negative examples. The resulting rule set describes the class in terms of rules that perform 

tests on the input attributes.  

 

An alternative to the induction of rules directly from the training data is to derive rules from 

decision trees, i.e. associate a rule to each leaf. The rule obtained that way would consist of 

all the tests along the path from the root till that node. However, rules derived straightforward 
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from a decision tree are far too complex and hard to understand (Quinlan, 1987; Pagallo, 

Haussler, 1990; Furnkranz, 1996). This is due to the decision tree cannot express succinctly 

the concept of disjunctions. This problem is known as replicated subtree (Pagallo, Haussler, 

1990). Please refer to Appendix B for an example.  

 

A basic form of the separate–and–conquer algorithm is given by the PRISM algorithm 

(Cendtowska, 1987). It starts with an empty set of rules and iteratively adds rules until all 

positive examples are covered. The way a single rule is induced is the following: conditions 

(tests on particular attributes) are greedily added to its body in the effort to include as many 

positive examples as possible while excluding as many negative examples as possible until 

no negative example is covered by the rule. The ruleset induced in this way covers all positive 

examples (completeness) and no negative example (consistency) (Furnkranz, 1996).  

 

Various separate-and-conquer algorithms differ in the way a single rule is learnt.  

 

Although they share the basic idea of PRISM, many covering algorithms avoid to induce a 

complete and consistent ruleset, that would overfit data and perform poorly on new and 

unseen instances. The goal is then to induce a ruleset that covers as many positive examples 

as possible while covering as few negative examples as possible. There are two general 

approaches to address the problem of overfitting: prepruning and postpruning. Prepruning 

deals with noise during the learning phase, while postpruning addresses this problem after 

inducing a complex ruleset (Furnkranz, 1997). In the context of separate–and–conquer 

algorithms, prepruning strategy favors the induction of simple rules with wide coverage rather 

than complex rules with low coverage; on the other hand, postpruning  allows learning 

complete and consistent rules and then simplifies the complex ruleset trying to discard rules 

or conditions that are actually modeling noise in the training data rather than trends in the 

domain (Furnkranz, 1997). The training set is usually split in a growing set and a pruning set. 

Typically, the worthiness of a rule or condition is evaluated on the pruning set, which was not 

used during the induction phase. This general approach is known as REP, reduced error 

pruning. As for other learning algorithm, prepruning applied to rule induction may prevent from 

discovering good conditions to add to rules, thus postpruning is usually preferred (Witten, 

Frank, 2005). 

However, postpruning strategies are inefficient in that they spend time learning a rule set that 

is then simplified (Furnkranz, 1997). 
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4.3.1 Background RIPPER 

 

Furnkfranz and Widmer (1994) introduced IREP algorithm. IREP stands for incremental 

reduced error pruning, and was introduced to overcome some limits of the REP approach. As 

previously mentioned, REP approach splits the training data into a growing set, which is 

approximately two–third of the original data, and a pruning set. It generates a ruleset that 

overfits the growing set and then tries to simplify it by repeatedly discarding the last condition 

within a rule or a rule itself. The next condition or rule to be pruned depends on the reduction 

of error as estimated on the pruning set. A disadvantage of this approach is that the induction 

does not consider instances in the pruning set and some important rules may be pruned 

because the pruning set is not enough representative.  IREP splits the training set into two 

partitions right after a rule is induced. IREP was proved experimentally to be as good as REP 

in terms of accuracy but much faster. The major difference between IREP and REP is that 

IREP does not wait till a complex ruleset is induced before pruning it back but it simplifies a 

single rule as soon as it is induced. 

 

Cohen (1995) proposed RIPPER (for repeated incremental pruning to produce error 

reduction) algorithm by performing some changes to the algorithm IREP: 1) he changed the 

metric used to guide the pruning phase, 2) he added a new criterion to stop adding rules to 

the ruleset, and 3) he introduced a post-process phase to optimize the ruleset induced. His 

experiments showed that RIPPER was competitive with C4.5 rules in terms of accuracy and 

performed better on noisy dataset. Moreover, he showed that RIPPER was faster than C4.5 

rules. 

 

Furnkranz (1996) presented an overview of rule learning algorithms that use a separate–and–

conquer strategy.   

4.3.2 RIPPER 

 

RIPPER repeats the following steps for each class at a time, moving from the last frequent 

one to the most frequent. 

RIPPER splits the training set into a growing set and a pruning set. It grows a rule by greedily 

adding conditions that maximizes the information gain and stops as soon as a rule covers 

negative examples. Whenever the rule is induced, it is immediately pruned back considering 
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the deletion of conditions in a last–to–first order. The next condition to be deleted depends on 

how much the estimated error on the pruning set increases. All covered instances by the rule 

are removed from the training set and this is randomly split into a growing and pruning sets. 

The process continues adding rules to the ruleset until there are no uncovered instances or 

the last rule induced has an estimated error above 50% or the description length of ruleset 

and examples is 64 bits greater than the smallest description length found so far. 

After the ruleset was induced, RIPPER starts a complex optimization stage that aims at that 

rules work well together (Frank, Witten, 1998).  

4.4 Ensemble Classifiers 

 

Bagging (Breiman, 1996), for bootstrap aggregating, and boosting (Freund, Shapire, 1996) 

are two methods that allow to create composite classifiers by combining many, say T, 

versions of the same learner. Each version is called “weak” or “base” classifier. The different 

versions of the same classifier derive from allowing the learner system to focus on different 

subsets of the same training data during T replications. In each replication, bagging performs 

a sampling with replacement from the training data whereas boosting uses all the training data 

but maintains a weight for each record such that records that were misclassified in the 

previous iteration are more likely to be used to train the next classifier.  

Bagging and boosting can be applied in both classification or regression problems. Given a 

new instance, the output of T models are combined by a voting strategy (for classification) or 

by averaging their outputs (for prediction). In bagging, all classifiers have the same weight, 

whereas in boosting, the more accurate the single classifier the more important its vote.  

These methods are known to increase the accuracy of the learning algorithm. The reason for 

this can be searched in the bias–variance decomposition (Witten, Frank, 2005). The expected 

error of a classifier is the sum of a bias and a variance component. The bias relates to the 

persistent error of that particular learning algorithm, whereas the variance is due to that 

particular training set, which is inevitably finite and not fully representative of the whole 

population. Combining multiple models reduces the variance component of the expected 

error.  

Breiman (1996) pointed out that bagging improves the accuracy of a learning algorithm when 

this is unstable, i.e., little perturbation in the training set can lead to very different learnt 

models. Decision trees are known to be unstable, thus bagging improves the accuracy of 

these learners.  
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4.4.1 Bagging 

 

Let n be the number of examples in the training dataset. For each of the T iterations, the 

algorithm applies the bootstrap1 method to derive a training and test sets of approximately 

63.2% and 36,8% of the original dataset. The algorithm applies a learning model to each of 

the training set and stores the resulting model. When it comes to classify a new instance, its 

class is predicted by each of the T models and the algorithm selects the most popular class. 

4.4.2 Boosting 

 

The major idea of boosting is to “maintain a distribution of weights over the training data” 

(Freund, Shapire, 1996). Weight works as the probability of an instance to occur and is 

manipulated by the algorithm at the end of each round t=1,..,T in order to force the next 

learner to focus on examples that were misclassified by the previous classifier. 

 

Let n be the size of the training data. The algorithm starts by assigning the same weight 1/! 

to each instance. For each of the T iterations, boosting calls the weak learner on the training 

data, stores the model, computes its error e as the sum of the weights of the instances that it 

misclassified and, stores e. If the error is 0% or higher than 50%, boosting stops learning new 

models. Otherwise, the weights of the instances are adjusted to give more weight to instances 

that were misclassified by the last learner. This is done by multiplying the weight of each 

correctly classified instance by a factor !
!!!

.  

Then, boosting normalizes all the weights such that their sum is 1. 
                                                        
1 Lets assume that we are given a training dataset of size n. The bootstrap method samples n instances 

with replacement from the original training dataset to create a new training data of the same size. 

Because it samples with replacement, it is certainly possible that some of the instances in the original 

dataset will be picked up more than once whereas others will not be considered: these ones will 

constitute the test set. The proportion of the test instances can be evaluated as follows: 

Each time the algorithm chooses an instance, the probability that a record is not picked up is (1 − !
!
), 

and after n times is 1 − !
!

!
~ !
!
= 0.368 (Witten, I.H., Frank, E. 2005). Thus, the test set consists of 

36.8% of the original dataset and the training set consists of the remaining 63.2% (even if its size is n). 

The estimated error combines the test error and training error according to this equation: 

! = 0.632  !!"#!  !"#$%"&'#   +   0.368  e!"#$%$%&  !"#$%"&'# 
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When it comes to classify a new record, boosting uses the majority vote technique but weights 

the vote of a single learner according to the metric – log  ( !
!!!

).  
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Chapter 5 – Experimental Design 

This chapter reviews the dataset used in this thesis, the way it was created and the 

experimental design.  

The dataset was derived in SAS BASE, whereas feature selection and classification were 

performed in WEKA. WEKA is an open source,  Java–based data mining package developed at 

the University of Waikato (New Zeeland). It can be downloaded at 

http://www.cs.waikato.ac.nz/ml/weka. 

5.1 Dataset 

 

5.1.1 Dataset Description 

 

The dataset consists of 133,481 examples and 15 features: 14 input variable and 1 class label 

(JOIN).  Each instance regards a pair of images of manuscripts and is either a “join” or a “non 

join”, depending on whether or not the two fragments belong to the book originally. 

 

Among the input variables, eleven represent the absolute difference in physical properties of 

the two images, such as the average height of the lines, average spacing between the lines, 

top margin, bottom margin, left margin, right margin, the height of the image, the width of the 

image, the height of the written portion and the width of the written portion and finally the 

number of lines. Among the remaining three input variables, COMPLETENESS_CALC is 

computed multiplying a completeness score of the two images, BIFOLIO assumes value 1 if 

none or both the fragments are bifolio and 0 otherwise, QTY_CONC is computed 

concatenating a quality description of both images.  

 

Approximately 90% of the instances in the dataset represents “non join” (120,438) and the 

remaining 10% (13,043) represents “join”. The dataset was created imbalanced in order to 

reflect some how the reality in which among all the possible combinations of pairs of images 

only a small portion will be a “join”. 

 

The table 5.1 summarizes the characteristics of the fifteen features in the dataset.  
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Table	  5.1:	  Summary	  of	  dataset.	  	  

 

It can be seen that none of the attributes assume a missing value. A part from QTY_CONC and 

BIFOLIO, which are respectively categorically–valued and Boolean, all input attributes are 

numerically–valued.  It can be seen that the average values of the numerical attributes are 

commensurate. 

5.1.2 How the dataset was derived 

Images relative to Genizah fragments of manuscripts can be viewed as organized around four 

main concepts: 

• joins 

• classmarks 

• fragments 

• images 

A join is a set of two or more classmarks, a classmark is a set of 1 or more fragments and 

each fragment has 2 images, recto and verso.  Classmarks belonging to the same join 

Feature Type Missing Min Max Mean Std Dev Distinct Value 

AVG_LINE_HEIGHT_DIFF Num 0% 0 0.8 0.1 0.1 58,777 

AVG_LINE_SPAC_DIFF Num 0% 0 10.3 0.2 0.2 80,377 

TOP_MRGN_DIFF Num 0% 0 20.9 0.7 0.9 105,770 

BOTTOM_MRGN_DIFF Num 0% 0 21.5 0.9 1.0 108,575 

LEFT_MRGN_DIFF Num 0% 0 23.6 1.9 2.3 112,853 

RIGHT_MRGN_DIFF Num 0% 0 22.3 1.9 2.3 112,930 

HEIGHT_DIFF Num 0% 0 36.1 3.3 2.9 111,524 

WIDTH_DIFF Num 0% 0 27.7 3.9 3.4 112,561 

WIDTH_WRITTEN_DIFF Num 0% 0 21.5 1.9 1.6 113,874 

HEIGHT_WRITTEN_DIFF Num 0% 0 37 2.7 2.2 115,912 

N_LINES_DIFF Num 0% 0 109 8.6 7.5 76 

COMPLETENESS_CALC Num 0% 0 1 0.6 0.2 1,966 

BIFOLIO Boolean 0% 0 1 NA NA 2 

QTY_CONC Char 0% NA NA NA NA 49 

JOIN Char 0% NA NA NA NA 2 
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consists of fragments of manuscripts from the same original work. 

The dataset used in this project was derived starting from two datasets provided by the FGP 

team. The first dataset, say IMAGES, consists of all images available at the FGP. Each 

instance is univocally identified by the image id (FGPI_IMG_NUM) and belongs to a unique 

classmark (INV_ID). All the physical measurements relative to images are available in this first 

table. The second table, say JOINS, consists of two fields: JOIN_ID and INV_ID. Thus, different 

classmarks are closely grouped together into joins. 

 

The final dataset created consists of all possible combination of two images belonging to the 

same join (“joins”) and a number of random matches of two images that are not known to 

belong to the same work (“non joins”). 

To obtain this dataset, the following steps were carried in SAS BASE: 

• the two datasets IMAGES and JOINS were imported in SAS 

• the table IMAGES was split into two tables of the same size, say IMAGES_1 and 

IMAGES_2. All fields in the first table were renamed with a suffix “_1” and all fields in 

the second table were renamed with a suffix “_2”. An incremental id was added to 

both tables and used to join them. The table obtained, say IMAGES_NON_JOIN, 

consisted of half of the rows from the original dataset and twice the number of 

features. At this point, the absolute difference in the physical properties  of the two 

images could be computed and a new field was added (JOIN), assuming the value 

“non join” for all the rows.  

• To obtain all possible combination of two classmarks (INV_ID) belonging to the same 

join (JOIN_ID), the table JOINS was duplicated into two tables, say JOIN_1 and JOIN_2, 

renaming INV_ID with a suffix “_1” and “_2” accordingly. The two tables were then 

joined by JOIN_ID, which is equivalent to obtain all combination of two inventory ids 

from the same join. To eliminate duplications and instances consisting of the same 

inventory id, the table was sorted by JOIN_ID, INV_ID_1, INV_ID2 and only the rows 

having INV_ID_2 greater than INV_ID1 were retained. This last table was then merged 

to IMAGES to retrieve all information relative to inventory ids. At this point all absolute 

differences between the physical properties of the images were computed. A field 

JOIN was added to this table, say IMAGES_JOIN, assuming only the value “join”.  

• The final dataset was obtained reading from both IMAGES_NON_JOIN and 

IMAGES_JOIN. 

• It has been carried out a final check to see whether randomly matched images to 

create “non joins” were not actually “joins”. 
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Please refer to the Appendix A for the SAS code implemented. 

5.2 Feature Selection 

Features selection methods fall into two main groups: filters and wrappers. Filters produce a 

ranking of attributes or subsets of attributes based on general characteristics of the data, 

whereas wrappers evaluate the usefulness of a subset of attributes with respect to a particular 

domain and a particular learner. Filter methods can be further classified as univariate or 

multivariate depending on whether they assess features individually or taken in groups.  

 

Section 5.2.1 reviews the experimental design for filter methods, 5.2.2 reviews the 

experimental design for wrapper methods and 5.3 reviews how results from feature selection 

were evaluated using classification. 

5.2.1 Filter methods 

5.2.1.1 Univariate technique 

The worth of an attribute was evaluated based on two metrics:  

- its Chi-squared statistic with respect to the class. This tests whether each input 

variable is independent from the class JOIN.  

- its information gain (IG) with respect to the class.  

 

The method was performed using 10-fold cross validation, i.e. performing a ranking separately 

for each of 10 folds of the dataset and then averaging the rankings. 

5.2.1.2 Multivariate technique: Correlation–Based Filter (CFS) 

 An exhaustive search through the space of attribute subsets was performed on each of 10-

folds of the dataset to find a good subset of features that were “highly correlated to the class, 

yet uncorrelated to each other” (Hall, 1999). The output of the filter is a list of attributes with an 

indication saying how many times (in how many folds) that attribute was selected to be part of 

the optimal subset. 
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5.2.2 Wrapper Method 

 

The wrapper method was applied using as black box inducers a decision tree C4.5 (Quinlan, 

1993) and rule-learner RIPPER (Cohen, 1995). 

The accuracy of the classifier embedded within the feature selection process was estimated 

on a separate test set (1/3 of the original dataset) that was not seen during its induction. 

 

The attribute space was searched through the best-first (BeFi) algorithm and the genetic 

algorithm (GA). As previously mentioned in chapter three, BeFi search doesn't terminate when 

the performance starts to fall but rather keeps a track of all attribute subsets evaluated so far, 

sorted in order of the performance measure, so that it can revisit an earlier configuration. The 

length of the list was set equal to five. Both directions of the search, Forward Selection (FoSe) 

and Backward Elimination (BaEl), were considered. Genetic algorithm was run setting the 

crossover probability to 0.6, mutation probability 0.033 and population size 20. The maximum 

number of generations was set to 20. 

5.3 Evaluation of Feature Selection: Classification 

 

The worth of the subsets of features returned by the different FS methods were evaluated 

using several machine learning algorithms. The basic idea was to compare the performance 

(accuracy) of a classifier on the original dataset and on the newly obtained dataset containing 

only the subset of features returned by the feature selection method. 

 

The ranking of attributes’ importance returned by univariate filters were evaluated by running 

a classification tree C4.5 on datasets consisting of the top n (n=1,2,..,14) attributes. 

 

To estimate the goodness of correlation–based CFS filter, C4.5, bagged trees, boosted trees2 

and RIPPER were run ten times on the two datasets consisting of all the attributes and the 

dataset consisting of only those attributes that were included in the optimal subset. This was 

                                                        
2 Bagged trees and boosted trees are abtained by combining ten decision trees C4.5 via bagging and 
boosting respectively. 
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done to obtain a confidence interval for the estimated accuracy for each classifier. Moreover, 

a paired t-tests on each shuffle of the dataset was performed to compare the accuracy of the 

4 inducers at significance level 0.05. The experiment was conduced using the Experimenter 

tool in WEKA.  

 

The same procedure was followed to evaluate the goodness of the subsets returned by 

wrapper methods. The subsets returned by wrapper using C4.5 as evaluation function and 

employing a BeFiFoSe, BeFiBaEl, and GA search, were assessed by running 10 times a 

C4.5, a boosted tree and a bagged tree on the datasets containing all the attributes and on 

datasets consisting of only the attributes in the “optimal” subsets. The goodness of subsets 

returned by the wrapper embedding a RIPPER and searching via BeFiFoSe, BeFiBaEl and 

GA were assessed by running 10 times RIPPER on the original dataset and on a datasets 

with only the “optimal” features. 

 

Final note. All Feature selection methods were run on the entire datasets, whereas 

classification methods were run on a random stratified subsample of the dataset (50%) for 

computational complexity reasons. 
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Chapter 6 – Experimental Results 

 

6.1 Filters 

6.1.1 Univariate Filters 

 

Univariate filters were used to produce a ranking for each of the ten folds in which the dataset 

was partitioned and their results were averaged over the folds. 

Table 6.1 reports the average ranking of attributes using !!  !"#!  and  IG as evaluation metrics. 

The standard deviation is reported between brackets. The results obtained are very similar, a 

part from small local “swaps”. 

 

 

Table	  6.1:	  Average	  ranking	  over	  ten	  folds	  using	  !!	  test	  and	  IG	  

FEATURE Avg Ranking 10–Fold 

(!!) 

Avg Ranking 10–Fold 

(Information Gain) 

AVG_LINE_SPAC_DIFF 1.4+-0.49 1.4+-0.49 

AVG_LINE_HEIGHT_DIFF 1.6+-0.49 1.6+-0.49 

WIDTH_DIFF 3.1+-0.3 3.1+-0.3 

HEIGHT_DIFF 3.9+-0.3 3.9+-0.3 

WIDTH_WRITTEN_DIFF 5.4+-0.66 5+-0 

LEFT_MRGN_DIFF 6.6+-1.02 7.2+-0.75 

HEIGHT_WRITTEN_DIFF 6.8+-0.87 6.3+-0.46 

RIGHT_MRGN_DIFF 7.2+-0.98 7.5+-0.67 

BOTTOM_MRGN_DIFF 9.1+-0.3 9.4+-0.49 

TOP_MRGN_DIFF 9.9+-0.3 10.4+-0.66 

COMPLETENESS_CALC 11+-0 10.2+-0.87 

N_LINES_DIFF 12+-0 13+-0 

QTY_CONC 13+-0 12+-0 

BIFOLIO 14+-0 14+-0 
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The 5 most important features are the same in both methods. The 6th  and 7th most important 

features are swapped in the two rankings and the same for the 10th  and 11th  and 12th  and 

13th. The features in the 8th, 9th  and 14th position are the same in both ranking. 

Being the ranking very similar, from now on only !! test will be considered. 

Time taken to return these rankings was about 1 minute. 

6.1.1.1 Evaluation Univariate Filters 

 

To evaluate the result of the filter method, a classification tree C4.5 was applied to the dataset 

consisting of the n most important features (n=1,2,..,14).  

The results are summarized in Table 6.2. 

 

Top n Features Estimated Accuracy on holdout set n° Leaves Size Tree Time build model (sec) 

     

1 93.20% 103 205 6.15 

2 94.24% 593 1,185 10.37 

3 94.77% 697 1,393 12.51 

4 95.15% 843 1,685 17.61 

5 95.34% 923 1,845 24.05 

6 95.36% 966 1,931 26.13 

7 95.49% 984 1,967 29.38 

8 **95.57% 1,031 2,061 38.29 

9 95.35% 1,063 2,125 36.33 

10 95.34% 1,119 2,237 43.16 

11 95.44% 1,145 2,289 50.59 

12 95.47% 1,291 2,581 60.46 

13 95.28% 1,822 2,750 56.24 

14 95.33% 1,862 2,830 78.32 

Table	  6.2	  Performance	  of	  C4.5	  using	  the	  top	  n	  features	  returned	  by	  univariate	  filter.	  

 

It can be seen that just by using the best attribute (the difference in the average spacing 

between lines) the estimated accuracy on the hold out set is quite high (93,20%). The 
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estimated accuracy increases while including the next best attributes and reaches its 

maximum when the eight most relevant feature are taken together. This represents an 

increase of 0.24% respect to the baseline accuracy when all attributes are included. When the 

9th most important feature is added, BOTTOM_MRGN_DIFF, the accuracy drops to its baseline 

value 95,33% and remains stable around this value when the 10th attribute, TOP_MRGN_DIFF, 

is added to the subset. The accuracy starts to increase slightly when the completeness 

measure and the quality information are added (95.47%) before dropping again to the base 

value when all attributes are considered.  

 

Chart 6.1 reports the estimated accuracy of C4.5 built considering the top n features 

(n=1,..,14). 

 

 

Chart	  6.1:	  Estimated	  accuracy	  of	  C4.5	  using	  the	  top	  n	  features	  returned	  by	  univariate	  filter.  
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6.1.2 Multivariate Filter 

 

CFS was run against ten separate folds of the entire dataset and returned the number of 

times (in how many folds) a given attribute was chosen to be part of the optimal subset. 

 

Table 6.3 reports the results of CFS. 

 

Attribute Number of folds In the optimal subset 

HEIGHT_DIFF 10 Yes 

WIDTH_DIFF 10 Yes 

AVG_LINE_HEIGHT_DIFF 10 Yes 

AVG_LINE_SPAC_DIFF 10 Yes 

LEFT_MRGN_DIFF 10 Yes 

RIGHT_MRGN_DIFF 10 Yes 

TOP_MRGN_DIFF 10 Yes 

BOTTOM_MRGN_DIFF 10 Yes 

WIDTH_WRITTEN_DIFF 10 Yes 

HEIGHT_WRITTEN_DIFF 10 Yes 

COMPLETENESS_CALC 0 No 

QTY_CONC 0 No 

N_LINES_DIFF 0 No 

BIFOLIO 0 No 

Table	  6.3:	  Number	  of	  times	  an	  attribute	  was	  chosen	  to	  be	  part	  of	  the	  optimal	  set.	  	  

 

The selected features correspond to the 10 most relevant features returned by the univariate 

filters in the previous section.  
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6.1.2.1 Evaluation Multivariate Filter 

 

Let !"#"$%!! represent the original dataset and !"#"$%!! the dataset consisting of the features 

returned by CFS. 

Decision tree C4.5, bagged tree, boosted tree and RIPPER were run ten times against 

!"#"$%!! and !"#"$%!!  and the estimated accuracies are reported in table 6.4. At each run, 

datasets were randomly split in training (66%) and test sets (34%). The table reports the 

average accuracy over ten runs and its standard deviation between brackets. WEKA computes 

a paired t-test to compare the performance of the different classifiers with respect to the base 

classifier, here C4.5. Notations v and * indicate that there is enough statistical evidence (at 

confidence level 0.05) to conclude that the result is higher or lower than the baseline (C4.5) 

estimate. 

 

DATASET C4.5 BAGGED TREE BOOSTED TREE RIPPER 

     !"#"$%!! 95.09 (0.18) 96.18 (0.14) v 97.12 (0.09) v 94.50 (0.11) * 

!"#"$%!! 95.00 (0.11) 96.20 (0.13) v 96.97 (0.10) v 94.29 (0.12) * 

     

Table	   6.4:	   Estimated	   accuracy	   of	   the	   four	   classifiers	   on	   the	   original	   dataset	   and	   on	   the	   dataset	  

consisting	  of	  only	  the	  optimal	  subset	  of	  features	  returned	  by	  CFS.	  

 

It can be seen that, a part from the bagged tree, CFS decreased the estimated accuracy of all 

classifiers. The classifier mainly impacted is RIPPER, which accuracy is decreased by 0.21%. 

It can also be seen that there is enough statistical evidence to conclude that bagged tree and 

boosted tree are more accurate on both datasets than C4.5, whereas RIPPER is worse in 

both datasets. 

Table 6.5 reports the averaged User CPU Time (sec) over ten runs for each classifier on the 

two datasets. This CPU time is related to the induction phase. 
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DATASET C4.5 BAGGED TREE BOOSTED TREE RIPPER 

     !"#"$%!! 10.77 (1.13) 83.06 (3.22) v 122.50 (7.18) v 89.52 (18.59) v 

!"#"$%!! 7.95 (0.75) 66.52 (1.88) v 184.27 (23.27) v 86.07 (18.61) v 

          

Table	  6.5:	  Averaged	  user	  CPU	   time	   to	   train	   the	   four	   classifiers	  on	   the	  original	  dataset	  and	  on	   the	  

dataset	  consisting	  of	  only	  the	  optimal	  subset	  of	  features	  returned	  by	  CFS.	  

It can be seen that, a part from the boosted tree, CFS improved the learning time of all 

classifiers, particularly the one of the bagged tree (by 16.54 sec). It can also be seen that, on 

both datasets, the time required to induce the bagged tree, the boosted tree and RIPPER is 

statistically longer than for C4.5. 

 

Table 6.6 reports the averaged complexity, in terms of number of rules produced, of C4.5 and 

RIPPER over ten runs.  

 

DATASET C4.5 RIPPER 

   !"#"$%!! 976.90 (109.50) 31.70 (3.06)* 

!"#"$%!! 583.00 (28.55) 34.50 (3.98)* 

      

Table	  6.6:	  Averaged	  number	  of	   rules	  produced	  by	  RIPPER	  and	  C4.5	  when	  run	  against	   the	  original	  

dataset	  and	  the	  one	  consisting	  of	  only	  the	  optimal	  subset	  of	  features	  returned	  by	  CFS.	  

 

It can be seen that CFS improves the complexity of C4.5, both in terms of mean and standard 

deviation. In fact, at the expense of a small reduction in accuracy by 0.09%, the new tree 

produced 394 less rules. CFS slightly increases the complexity of RIPPER, requiring about 3 

more rules to learn the concept of “join”. From this table it can also be seen how RIPPER 

produces more compact rulesets compared to C4.5 (about 945 less rules when looking at 

!"#"$%!!). 
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6.2 Wrapper 
 

Wrapper method was applied using as evaluator a C4.5 and RIPPER. 

 

Although the number of attributes is small (14), it was prohibitive to run the wrapper method 

with an exhaustive search. This would have meant running each learning algorithm 

incorporated in the wrapper method 2!" = 16,384 times. For this reason, the space of subsets 

of attributes was searched heuristically.  

Three types of searches were considered: 

- with a BeFi search, starting with no attribute (forward selection) BeFiFoSe 

- with a BeFi search, starting with all the attributes (backward elimination) BeFiBaEl 

- with a GA search. 

 

Table 6.7 summarizes the subsets returned by the different wrapper methods. 

 

 

Learning 

Algorithm 

 

Search 

Method 

 

“Optimal” Subset 

 

Time taken to 

find subset 

C4.5 BeFiFoSe HEIGHT_DIFF,WIDTH_DIFF, AVG_LINE_HEIHGT_DIFF, 

AVG_LINE_SPAC_DIFF, LEFT_MRGN_DIFF, 

WIDTH_WRITTEN_DIFF, COMPLETENESS_CALC 

21 minutes 

C4.5 BeFiBaEl; 

GA 

HEIGHT_DIFF, WIDTH_DIFF, N_LINES_DIFF, 

AVG_LINE_HEIGHT_DIFF, AVG_LINE_SPAC_DIFF,  

LEFT_MRGN_DIFF, RIGHT_MRGN_DIFF, 

BOTTOM_MRGN_DIFF, WIDTH_WRITTEN_DIFF, 

COMPLETENESS_CALC, QTY_CONC 

35minutes/50 

minutes 

RIPPER BeFiFoSe; 

BeFiBaEl; 

GA 

All attributes More than 18 

Hours 

Table	  6.7:	  Optimal	  subsets	  returned	  by	  wrapper	  employing	  BeFiFoSe,	  BeFiBaEl	  and	  GA	  for	  C4.5	  and	  

RIPPER	  

 

The subset returned by the wrapper using C4.5 and employing a BeFiBaEl was the same as 

the one employing a GA and consisted of 11 features. The wrapper using C4.5 and employing 
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a BeFiFoSe returned a subset of only 7 features. The time taken to find the “optimal” subset 

with BeFiFoSe was 21 minutes, whereas took longer searching with BeFiBaEl (35 minutes) 

and with GA (about 50 minutes).  

It can be seen that the “optimal” subset returned by BeFiFoSe consisted of the first six most 

relevant features returned by the univariate filter and one irrelevant feature, the completeness 

measure.  

The subset returned by BeFiBaEl or GA consisted of the first five most relevant features 

returned by the univariate filter and three irrelevant features filtered out by CFS. It can be 

seen how wrapper may prefer irrelevant features to more relevant ones, mainly if the relevant 

features not selected are redundant. However, the features excluded were not redundant as 

they were not filtered by the multivariate filter CFS. Thus, combining the less relevant features 

between them or with the remaining features included in the optimal set resulted in a higher 

accuracy estimate than including just the most relevant features. This is probably due to the 

presence of higher order interactions between features. This kind of interactions can be 

detected only by the wrapper and especially when it starts with the entire set of attributes 

(backward elimination).  

 

Running the wrapper method using RIPPER’s performance as internal evaluator of subsets 

and searching via BeFiFoSe, BeFiBaEl and GA returned as “optimal” subset one consisting of 

all attributes. Wrapper using RIPPER required a long time to return the optimal solution, 

ranging from 18 hours to one day. 

 

 6.2.1 Evaluation Wrapper 

6.2.1.1 Wrapper using Decision Tree C4.5 

 

Let !"#"$%!! represent the original dataset, !"#"$%!! the dataset consisting of only those 

features returned by the wrapper using BeFiFoSe and !"#"$%!! the dataset consisting of only 

those returned using BeFiBaEl or GA.  

 

Table 6.8 reports the estimated accuracy of C4.5, bagged and boosted tree over ten runs 

against the three datasets !"#"$%!!,!"#"$!!,!"#"$%!!. 
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DATASET C4.5 BAGGED TREE BOOSTED TREE 

    !"#"$%!! 95.09 (0.18) 96.18 (0.14) 97.12 (0.09) 

!"#"$%!! 95.22 (0.19) 96.16 (0.09) 96.97 (0.08) 

!"#"$%!! 96.10 (0.17) 96.14 (0.13) 97.05 (0.09) 

    

Table	  6.8:	  Estimated	  accuracy	  of	  C4.5,	  bagged	   tree	  and	  boosted	   tree	  on	   the	  entire	  dataset,	   on	   the	  

dataset	   returned	   by	   wrapper	   searching	   forward	   and	   on	   the	   dataset	   searching	   backwards	   or	   via	  

genetic	  algorithm.	  

 

It can be seen from the table that wrapper method improved the accuracy of C4.5, mostly 

when it searched backwards or via genetic algorithm. The estimated accuracy averaged over 

the runs is 1.01% higher than the accuracy when all features are included in the dataset. The 

fact that the major improvement is obtained searching the space backward or including 

randomization may suggest the presence of higher order interactions, that by searching the 

space starting from no attribute and adding one attribute at a time, cannot be found.  

Bagging or boosting C4.5 working on subsets returned by the wrapper decreased their 

estimated accuracies. The highest decrease is registered when boosting ten C4.5 working on 

datasets consisting of the small subset returned by BeFiFoSe.  

 

Table 6.9 reports the averaged CPU time for inducing the three supervised learners over ten 

runs on the three datasets. It can be seen that almost all the classifiers required less time to 

build their model when using only the subsets of attributes returned by the wrappers. 

BeFiFoSe improved the performance of both C4.5 and the bagged tree: C4.5 required 4.41 

seconds less to learn the model (which performs better also in terms of accuracy) and the 

bagged tree required about 24 seconds less. BeFiFoSe degraded the learning time of the 

boosted tree, which required about 12 more seconds. BeFiBaEl or GA improved the 

performance of all three classifiers, particularly the boosted tree, which required about 33 less 

seconds. The paired t-tests prove that inducing bagged tree or boosted tree requires more 

time than inducing a single decision tree. 
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DATASET C4.5 BAGGED TREE BOOSTED TREE 

 

     dataset! 10.77 (1.13) 83.06 (3.22) v 122.50 (7.18) v 

  dataset!  6.36 (0.53) 59.12 (2.68) v   134.99 (16.38) v 

dataset!  8.42 (0.84) 66.25 (4.82) v    89.73 (3.79) v 

 

   
Table	  6.9:User	  CPU	  time	  required	  to	  learn	  C4.5,	  bagged	  tree	  and	  boosted	  tree	  on	  the	  entire	  dataset,	  

on	  the	  dataset	  returned	  by	  wrapper	  searching	  forward	  and	  the	  dataset	  searching	  backwards	  or	  via	  

genetic	  algorithm.	  

 

Table 6.10 shows the complexity, measured in terms of number of leaves or rules, of the 

decision tree C4.5 on the three datasets. 

 

DATASET C4.5 

  !"#"$%!! 976.90 (109.50) 

!"#"$%!! 526.40 (34.85) 

!"#"$%!! 1001.50 (82.99) 

  

Table	   6.10:	   Number	   of	   rules	   produced	   by	   C4.5	   on	   the	   entire	   dataset,	   on	   the	   dataset	   returned	   by	  

wrapper	  searching	  forward	  and	  the	  dataset	  searching	  backwards	  or	  via	  genetic	  algorithm.	  

 

It can be seen that wrapper traversing the search space via BeFiFoSe gives better result in 

terms of number of rules produced than the one using BeFiBaEl or GA. In fact, the number of 

leaves when BeFiFoSe is employed is about 475 below the number of rules produced by C4.5 

using the subset returned by BeFiBaEl or GA. BeFiFoSe improved the complexity of C4.5 

without feature selection by about 450 leaves.  
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6.2.1.2 Wrapper using RIPPER 

 

As seen in section 6.2, the wrapper using RIPPER as internal evaluator of the usefulness of 

subsets of features returned the entire set of attributes. 

 

6.3 Summary of Performance of CFS and Wrappers for the four 
Classifiers 
 

The following tables summarizes the averaged accuracy, user CPU time and complexity 

(number of rules) of C4.5, bagged tree and boosted tree when run ten times against 1) the 

original dataset, 2) the dataset consisting of only the features returned by CFS, 3) the dataset 

consisting of only the features returned by the wrapper performing BeFiFoSe, and 4) the 

dataset with the subset of features returned by the wrapper performing BeFiBaEl or GA. The 

estimated performance, user CPU time and complexity are reported also for RIPPER, that 

was run against the first two datasets. In the case of RIPPER !"!"#$!! represents both the 

original data set and the dataset consisting of the features returned by the wrapper method. 

Performance for a given classifier that were better than its baseline performance on the 

original set presented in green, otherwise in red. The best performance for a given classifier is 

emphasised in bold. 

 

Accuracy 

      C4.5  Bagging   Boosting       RIPPER 

------------------------------------------------------------------------------------ 

!"#"$%!!    95.09(0.18)     96.18(0.14)    97.12(0.09)    94.50(0.11)     

!"#"$%!!    95.00(0.11)     96.20(0.13)    96.97(0.10)    94.29(0.12)     

!"#"$%!!    95.22(0.19)     96.16(0.09)    96.97(0.08)      

!"#"$%!!    96.10(0.17)     96.14(0.13)    97.05(0.09)     

------------------------------------------------------------------------------------ 

Table	  6.11:	  Estimated	  accuracy	  of	  C4.5,	  bagged	  tree,	  boosted	  tree,	  and	  RIPPER	  on	  the	  entire	  dataset,	  

the	  dataset	  consisting	  of	  optimal	  subset	  returned	  by	  CSF	  and	  on	  the	  datasets	  returned	  by	  wrapper	  

searching	  forwards	  and	  backwards.	  
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User CPU Time Training 

      C4.5  Bagging   Boosting       RIPPER 

------------------------------------------------------------------------------------ 

!"#"$%!!    10.77(1.13)       83.06(3.22)     122.50( 7.18)    89.52(18.59)    

!"#"$%!!    7.95(0.75)         66.52(1.88)     184.27(23.27)   86.07(18.61)     

!"#"$%!!    6.36(0.53)         59.12(2.68)     134.99(16.38)     

!"#"$%!!    8.42(0.84)         66.25(4.82)      89.73( 3.79)     

------------------------------------------------------------------------------------ 

Table	  6.12:	  User	  CPU	  time	  required	  for	  learning	  C4.5,	  bagged	  tree,	  boosted	  tree	  and	  RIPPER	  on	  the	  

entire	   dataset,	   the	   dataset	   consisting	   of	   optimal	   subset	   returned	   by	   CSF	   and	   on	   the	   datasets	  

returned	  by	  wrapper	  searching	  forwards	  and	  backwards.	  

 

Complexity Model – Number Rules 

         C4.5     RIPPER 

--------------------------------------------------- 

!"#"$%!!    976.90(109.50)   31.70(3.06)                            

!"#"$%!!    583.00( 28.55)    34.50(3.98)     

!"#"$%!!    526.40( 34.85)                   

!"#"$%!!    1001.50( 82.99)                 

--------------------------------------------------- 

Table	   6.13:	   Number	   of	   rules	   produced	   by	   C4.5	   and	   RIPPER	   on	   the	   entire	   dataset,	   the	   dataset	  

consisting	   of	   optimal	   subset	   returned	   by	   CSF	   and	   on	   the	   datasets	   returned	   by	  wrapper	   searching	  

forwards	  and	  backwards.	  

 

It can be seen that C4.5’s best performance in terms of accuracy was obtained using the 

wrapper method searching backwards, its best time performance and complexity were 

obtained by using the wrapper searching forward.  

It seems that combining multiple C4.5 via bagging or boosting after having performed feature 

selection on the dataset based on wrappers using a single C4.5 results in a lower estimated 

accuracy. 

Boosting requires also more time to build the model when run against datasets consisting of 

features returned by feature selection methods. I think this is due to the fact that being an 
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iterative process that focus more and more on “hard” examples, it has to build more and more 

complex model, before being able to include the less relevant features.  

RIPPER performs best in terms of accuracy when using the wrapper method rather than the 

multivariate CFS method. Its learning time is reduced using CFS rather than wrapper (by 

about 3.45 sec). The best complexity is achieved when it is run on the entire dataset (it 

produces three less rules). An example of the rules produced by RIPPER with and without 

CFS are reported in Appendix C. 
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Chapter 7 – Conclusion 

 

The goal of this project was to integrate the effort of the Friedberg Genizah Project (FGP) 

Computerization Unit in discovering "joins" with data mining techniques to extract useful 

knowledge from data.  Data used in the project was derived from results of the FGP's 

algorithm, which runs against a large  dataset of digitalized images of medieval manuscripts. 

The algorithm extracts several information about the images, such as the  average spacing 

between lines in an image, average height of lines, number of lines, etc. There are other 

information extracted automatically that unfortunately were not available for this project, such 

as information on  the handwriting, content, style scripting. The information extracted was 

used by them to test whether the content of pairs of images could be or not be from the same 

book. In the first case, the pair of images is labeled as "join", in the second case as "non join". 

A batch of newly discovered "joins" were then submitted to the attention of domain experts to 

validate their findings.  

 

The idea of this project was to use the validated "joins" to: 1) train several supervised learning 

algorithms to learn the concept of "join", and 2) to assess the importance of features in 

discriminating between "joins" and "non joins".  

A dataset was derived consisting of the validated "joins" immersed in a multitude of "non 

joins", random pairs of images. The proportion "join"/"non join" was kept unbalanced 1:9. 

 

Several feature selection methods were used, both to estimate features’ general relevance, 

based on the characteristics of data, and their usefulness for a particular classification 

purpose.  

 

Univariate filters based on chi–squared test and information gain were considered to return a 

ranking of variables importance. These filters produced a ranking for each of the ten folds in 

which the dataset was partitioned and their results were averaged over the folds. Results from 

the two univariate filters were very similar. It was seen that, by only using the most relevant 

feature in the dataset, the difference between the average spacing between lines in the two 

images, a decision tree C4.5 could reach a classification accuracy of 93.2%. Univariate filters 

do not consider interactions between features so that it is impossible to say whether there are 

redundant features or features that can be useful only in presence of others.  
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For this reason, CFS correlation–based multivariate filter (Hall, 1999) was employed. An 

exhaustive search through the space of variables subsets was employed to allow CFS to find 

a subset of attributes that individually were highly correlated to the class but uncorrelated 

between them. CFS was run against ten separate folds of the entire dataset and returned the 

number of times (in how many folds) a given attribute was part of the optimal subset. CFS 

returned the top ten most relevant features. I concluded that the features excluded from the 

optimal subset, QTY_CONC, COMPLETENESS_CALC, BIFOLIO, N_LINES_DIFF, were not 

redundant, as they were not in any way derived from other features. Thus, CFS excluded the 

less promising features, based on their individual ability to discriminate between a "join" and a 

"non join". To evaluate the goodness of the optimal subset returned by CFS, a decision tree 

C4.5, a bagged tree, a boosted tree and RIPPER were used. CFS degraded the accuracy 

performance of all learners, a part from the bagged tree. However, CFS improved the learning 

time of all learners, except the boosted tree. CFS fails in detecting features that are relevant 

only when they assume a restricted set of values (locally relevant) or that are relevant only in 

presence of others features (Hall, 1999). By applying CFS, I conclude that there were not 

redundant features in the domain and that there are feature interaction and features locally 

predictive (for example QTY_CONC).  

 

Wrapper approach was employed to evaluate the usefulness of a subset of features to a 

particular classifier for this domain. Wrapper calls a specified classifier each time a subset of 

attributes needs to be evaluated. The classifiers used as black box inside the wrapper were 

decision tree C4.5 and rule–learner RIPPER. Although wrapper is very simple conceptually, it 

is very expensive from a computational point of view. For this reason, it was prohibitive to 

search extensively through the space of features subsets. That is why a genetic algorithm and 

best-first search were considered. Best-first was employed both starting from: 1) an empty set 

of features and searching forward and, 2) from the entire set of features and moving 

backwards. Wrapper using RIPPER as internal evaluator returned as "optimal" subset the 

entire set of attributes. Wrapper internally embedding C4.5 and searching forward returned a 

subset of 7 attributes, including one irrelevant feature filtered by CFS: COMPLETENESS_CALC. 

Wrapper searching backwards or via genetic algorithm returned a larger "optimal" subset, 

consisting 11 attributes, three of which were filtered by CFS (COMPLETENSS_CALC, N_LINES, 

QTY_CONC).  

 

In this project, the following classifiers were used: decision tree C4.5, bagged tree, boosted 

tree and, rule–learner RIPPER. The inducer that gave a better insight on the mapping 

between input variables and the class was RIPPER. RIPPER produces a set of IF-THEN-
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ELSE rules that are way more compact in this case than the rules extracted by a decision tree 

C4.5. They are very useful in that they give an immediate idea of what defines a "join" and in 

which regions of the search space to focus to find other "joins". 

 

An experiment consisting in running ten times each classifier against each of the datasets 

consisting of subsets of features returned by CFS and wrappers was performed and a paired 

t-test on the estimated accuracy, user CU time and complexity of the models was carried out 

in WEKA to compare their performance.  

C4.5 performed better in terms of accuracy when the dataset used consisted of the subset of 

features returned by the wrapper searching backwards (or genetic algorithm). These may 

prove that there is a higher (than two) order interactions between features. In fact, searching 

forward may detect second order interaction, while starting from the entire set of attributes 

and trying to remove one at a time can help detecting higher order. Paired t-tests showed that 

there was statistical evidence (at confidence level 0.05) to conclude that boosted and bagged 

trees performs better than a single C4.5. These tests reported also that RIPPER performs 

worse than C4.5 in terms of estimated accuracy but also that the complexity of the ruleset 

induced by RIPPER was better than the one returned by C4.5. From the experiment done, the 

ensemble classifiers obtained by combining ten decision trees C4.5 via bagging and boosting 

applied to datasets consisting of subsets of features “optimal” for a single C4.5 performed 

worse than when applied to the dataset consisting of all features. 

 

In general, classifiers performed surprisingly well, although despite the fact that only physical 

features of fragments were taken into account. The best classifier in terms of accuracy was 

the boosted tree, which achieved an estimated accuracy of 97.12%. 

 

FGP’s Computerization team found these results very promising. The estimated accuracies of 

classifiers were high if considered that only the physical features of images were considered 

in this project. Future extensions could be to include information about the author, 

handwriting, content and style. Classifiers that work well on imbalanced datasets could be 

investigated. Moreover, classifiers could be used attaching a higher cost to false positive. 

Finally, I would like to further investigate about statistical test to compare the same classifier’s 

accuracies when run against different datasets, for example, those consisting of only a subset 

of attributes because of feature selection.  
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Appendix A 

The following code was developed to import information relative to images and joins into a 

SAS library and tables. The main instructions used were data steps, to read and write 

datasets, proc sort, to sort tables, merge statements, to join tables and  proc sql to use native 

SQL language in SAS environment. 

 

SAS CODE 

 

/*Allocate the Library*/ 

LIBNAME LIBRERIA "C:\Documents and Settings\Administrator\Desktop\Tesi 

Images\TABELLE"; 

 

/*Write a dataset reading from the input file containing all images*/ 

 

 

DATA IMPORT_IMAGES; 

INFILE "C:\Documents and Settings\Administrator\Desktop\Tesi Images\DATI\IMAGES.TXT" 

DELIMITER='09'X DSD; 

INPUT INV_ID  : $10. 

          IMG_NAME  : $60. 

          FGPI_IMG_NUM :  $ 

          DPI 

          DPI_GRID 

          RESZ_SCL 

          NUM_FRAG 

          INIT_BB_H 

          INIT_BB_W 

          BB_ARRAY : $ 

          FN_ROT_ANG 

          HEIGHT 

          WIDTH 
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          BIF_LOCX1 

          BIF_LOCX2 

          BIF_LOCY1 

          BIF_LOCY2 

          NUM_DESC 

          FRAG_QTY : $30. 

          N_TEXT_COMP 

          N_LINES 

          AVG_LINE_H 

          AVG_LINE_SPAC 

          LEFT_MRGN 

          RIGHT_MRGN 

          TOP_MRGN 

          BOTTOM_MRGN 

          COMPLETENESS : COMMAX15.; 

RUN; 

 

/*Keep only some of the features*/ 

/* Compute new attributes, such as BIFOLIO, WIDTH_WRITTEN, HEIGHT_WRITTEN*/ 

DATA IMAGES; 

SET IMPORT_IMAGES; 

KEEP 

INV_ID 

IMG_NAME 

FGPI_IMG_NUM 

DPI 

DPI_GRID 

HEIGHT 

WIDTH 

BIF_LOCX1 

BIF_LOCX2 
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BIF_LOCY1 

BIF_LOCY2 

Bif 

FRAG_QTY 

N_LINES 

AVG_LINE_H 

AVG_LINE_SPAC 

LEFT_MRGN 

RIGHT_MRGN 

TOP_MRGN 

BOTTOM_MRGN 

width_written 

height_written 

COMPLETENESS ; 

if (completeness <1) and (dpi <>0 or dpi_grid <>0) and (dpi <700)   ; 

if dpi <>0 then do ; 

 height=height/dpi; 

 width=width/dpi; 

 LEFT_MRGN=LEFT_MRGN/dpi; 

 RIGHT_MRGN=RIGHT_MRGN/dpi; 

 TOP_MRGN=TOP_MRGN/dpi; 

 BOTTOM_MRGN=bottom_mrgn/dpi; 

AVG_LINE_H   =  AVG_LINE_H/dpi; 

AVG_LINE_SPAC =   AVG_LINE_SPAC/dpi; 

end; 

if dpi_grid <>0 then do ; 

 height=height/dpi_grid; 

 width=width/dpi_grid; 

 LEFT_MRGN=LEFT_MRGN/dpi_grid; 

 RIGHT_MRGN=RIGHT_MRGN/dpi_grid; 

 TOP_MRGN=TOP_MRGN/dpi_grid; 
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 BOTTOM_MRGN=bottom_mrgn/dpi_grid; 

AVG_LINE_H   =  AVG_LINE_H/dpi_grid; 

AVG_LINE_SPAC =   AVG_LINE_SPAC/dpi_grid; 

end; 

Bif='N'; 

if ( BIF_LOCX1 ne ""or BIF_LOCX2 ne ""  or BIF_LOCY1 ne "" or BIF_LOCY2 <> "" ) then do; 

Bif ='Y'; 

end; 

width_written= width - (left_mrgn+ right_mrgn);   

height_written=height -(top_mrgn+bottom_mrgn);    

RUN; 

 

/*First Split of the dataset*/ 

/*Creation of an incremental attribute id to be used later as a key in the inner join*/ 

 

DATA IMAGES_1 (RENAME=(                         INV_ID=INV_ID_1 

                                                IMG_NAME=IMG_NAME_1 

                                                FGPI_IMG_NUM=FGPI_IMG_NUM_1 

                                                HEIGHT=HEIGHT_1 

                                                WIDTH=WIDTH_1      

    BIF_LOCX1=BIF_LOCX1_1 

                                                BIF_LOCX2=BIF_LOCX2_1 

                                                BIF_LOCY1=BIF_LOCY1_1 

                                                BIF_LOCY2=BIF_LOCY2_1 

                                                BIF=BIF_1 

                                                FRAG_QTY=FRAG_QTY_1 

                                                N_LINES=N_LINES_1 

                                                AVG_LINE_H=AVG_LINE_H_1 

                                                AVG_LINE_SPAC=AVG_LINE_SPAC_1 

                                                LEFT_MRGN=LEFT_MRGN_1 

                                                RIGHT_MRGN=RIGHT_MRGN_1 
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                                                TOP_MRGN=TOP_MRGN_1 

                                                BOTTOM_MRGN=BOTTOM_MRGN_1 

                                                width_written = width_written_1 

                                                height_written = height_written_1 

                                                COMPLETENESS=COMPLETENESS_1)  ); 

SET  IMAGES (OBS=120438); 

id+1; 

RUN; 

 

/*Second Split of the dataset*/ 

/*Creation of an incremental attribute id to be used later as a key in the inner join*/ 

 

DATA  IMAGES_2 (RENAME=(INV_ID=INV_ID_2 

                                IMG_NAME=IMG_NAME_2 

                                FGPI_IMG_NUM=FGPI_IMG_NUM_2 

                                HEIGHT=HEIGHT_2 

                                WIDTH=WIDTH_2 

                                BIF_LOCX1=BIF_LOCX1_2 

                                BIF_LOCX2=BIF_LOCX2_2 

                                BIF_LOCY1=BIF_LOCY1_2 

                                BIF_LOCY2=BIF_LOCY2_2 

                                BIF=BIF_2 

                                FRAG_QTY=FRAG_QTY_2 

                                N_LINES=N_LINES_2 

                                AVG_LINE_H=AVG_LINE_H_2 

                                AVG_LINE_SPAC=AVG_LINE_SPAC_2 

                                LEFT_MRGN=LEFT_MRGN_2                                       

RIGHT_MRGN=RIGHT_MRGN_2                                       

TOP_MRGN=TOP_MRGN_2 

                                BOTTOM_MRGN=BOTTOM_MRGN_2 

                                width_written = width_written_2 
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                                height_written = height_written_2 

                                COMPLETENESS=COMPLETENESS_2)); 

        SET   IMAGES (FIRSTOBS=120439); 

id+1; 

RUN; 

 

 

PROC SORT DATA=  IMAGES_1; 

by id; 

run; 

 

PROC SORT DATA=  IMAGES_2; 

by id; 

run; 

 

/*Inner Join between the two splits Key: id*/ 

 

data     _MERGE  (drop = id) ; 

merge    IMAGES_1 

         IMAGES_2    ; 

BY ID; 

IF INV_ID_1 NE INV_ID_2; 

RUN; 

 

/*Computation of the attributes that represent the difference in physical characteristics of the 

images*/ 

 

 

DATA MERGE_DIFF; 

SET _MERGE; 

HEIGHT_DIFF = abs(HEIGHT_1 - HEIGHT_2); 
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WIDTH_DIFF = abs(WIDTH_1 - WIDTH_2); 

N_LINES_DIFF = abs(N_LINES_1 - N_LINES_2) ; 

AVG_LINE_DIFF = abs(AVG_LINE_H_1 - AVG_LINE_H_2); 

AVG_LINE_SPAC_DIFF = abs(AVG_LINE_SPAC_1 - AVG_LINE_SPAC_2); 

LEFT_MRGN_DIFF = abs(LEFT_MRGN_1 - LEFT_MRGN_2); 

RIGHT_MRGN_DIFF = abs(RIGHT_MRGN_1 - RIGHT_MRGN_2); 

TOP_MRGN_DIFF = abs(TOP_MRGN_1 - TOP_MRGN_2); 

BOTTOM_MRGN_DIFF = abs( BOTTOM_MRGN_1-BOTTOM_MRGN_2); 

WIDTH_WRITTEN_DIFF=abs(width_written_1 - width_written_2); 

HEIGHT_WRITTEN_DIFF=abs( height_written_1 -  height_written_2); 

COMPLETENESS_CALC =( COMPLETENESS_1 * COMPLETENESS_2); 

RUN; 

 

/*Final dataset representing “non join”*/ 

/*creation of the attribute JOIN”*/ 

 

 

DATA  IMAGE_DIFF_JOIN; 

SET   MERGE_DIFF  ; 

JOIN = 'NON_JOIN'; 

if inv_id_1 ne ''; 

RUN; 

 

/* Write a dataset reading from the input file containing all true joins */ 

 

DATA  IMPORT_JOINS; 

INFILE "C:\Documents and Settings\Administrator\Desktop\Tesi Images\DATI\JOINS.TXT" 

DELIMITER='09'X DSD; 

INPUT JOIN_ID 

INV_ID  : $10.  ; 

RUN; 
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proc sort data= import_joins out=  imp_join_srtd; 

by join_id; 

run; 

 

/*first copy of  IMPORT_JOINS*/ 

 

data imp_join_srtd1 (rename=inv_id=inv_id_1); 

set  imp_join_srtd; 

run; 

 

/*second copy of  IMPORT_JOINS*/ 

 

data  imp_join_srtd2 (rename=inv_id=inv_id_2) ; 

set imp_join_srtd; 

run; 

 

/*inner join between the two copy Key: JOIN_ID*/ 

 

proc sql; 

create table joins as 

select * from imp_join_srtd1 m1, imp_join_srtd2 m2 

where   m1.join_id=m2.join_id; 

quit; 

 

 

proc sort data= joins  out= joins_srtd; 

by join_id inv_id_1 inv_id_2; 

run; 
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/*delete duplicated information*/ 

 

data fine; 

set joins_srtd; 

if (inv_id_1 ne inv_id_2) and (inv_id_2>inv_id_1); 

run; 

 

 

proc sort data= fine out= fine_ndk nodupkey ; 

by inv_id_1 inv_id_2 ; 

run; 

 

 

proc sort data=  fine_ndk; 

by join_id  inv_id_1 inv_id_2; 

run; 

 

data im1 (rename =( 

INV_ID=INV_ID_1 

                                                IMG_NAME=IMG_NAME_1 

                                                FGPI_IMG_NUM=FGPI_IMG_NUM_1 

                                                HEIGHT=HEIGHT_1 

                                                WIDTH=WIDTH_1      

              BIF_LOCX1=BIF_LOCX1_1 

                                                BIF_LOCX2=BIF_LOCX2_1 

                                                BIF_LOCY1=BIF_LOCY1_1 

                                                BIF_LOCY2=BIF_LOCY2_1 

                                                BIF=BIF_1 

                                                FRAG_QTY=FRAG_QTY_1 

                                                N_LINES=N_LINES_1 

                                                AVG_LINE_H=AVG_LINE_H_1 
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                                                AVG_LINE_SPAC=AVG_LINE_SPAC_1 

                                                LEFT_MRGN=LEFT_MRGN_1 

                                                RIGHT_MRGN=RIGHT_MRGN_1 

                                                TOP_MRGN=TOP_MRGN_1 

                                                BOTTOM_MRGN=BOTTOM_MRGN_1 

                                                width_written = width_written_1 

                                                height_written = height_written_1 

                                                COMPLETENESS=COMPLETENESS_1)); 

 

set images; 

run; 

 

 

proc sort data= im1   ; 

by inv_id_1; 

run; 

 

 

proc sort data=  fine_ndk out= fine_ndk_1; 

by inv_id_1; 

run; 

 

/*retrieve all information relative to the first INV_ID */ 

 

data   fine_ndk1; 

merge im1 (in=im1) 

       fine_ndk_1 (in=fine); 

by inv_id_1; 

if im1 =1 and fine=1; 

run; 

 



 

72 

data im2 (rename =( 

INV_ID=INV_ID_2 

                                                IMG_NAME=IMG_NAME_2 

                                                FGPI_IMG_NUM=FGPI_IMG_NUM_2 

                                                HEIGHT=HEIGHT_2 

                                                WIDTH=WIDTH_2                                                  

             BIF_LOCX1=BIF_LOCX1_2 

                                                BIF_LOCX2=BIF_LOCX2_2 

                                                BIF_LOCY1=BIF_LOCY1_2 

                                                BIF_LOCY2=BIF_LOCY2_2 

                                                BIF=BIF_2 

                                                FRAG_QTY=FRAG_QTY_2 

                                                N_LINES=N_LINES_2 

                                                AVG_LINE_H=AVG_LINE_H_2 

                                                AVG_LINE_SPAC=AVG_LINE_SPAC_2 

                                                LEFT_MRGN=LEFT_MRGN_2 

                                                RIGHT_MRGN=RIGHT_MRGN_2 

                                                TOP_MRGN=TOP_MRGN_2 

                                                BOTTOM_MRGN=BOTTOM_MRGN_2 

                                                width_written = width_written_2 

                                                height_written = height_written_2 

                                                COMPLETENESS=COMPLETENESS_2)); 

 

set images; 

run; 

 

 

proc sort data= im2   ; 

by inv_id_2; 

run; 
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proc sort data=  fine_ndk out= fine_ndk_2; 

by inv_id_2; 

run; 

 

/*retrieve all information relative to the second INV_ID */ 

 

data   fine_ndk2; 

merge im2 (in=im2) 

       fine_ndk_2 (in=fine); 

by inv_id_2; 

if im2 =1 and fine=1; 

run; 

 

 

 

proc sort data=fine_ndk2    ; 

by join_id; 

run; 

 

proc sort data=fine_ndk1    ; 

by join_id; 

run; 

 

 

data finefine; 

merge fine_ndk1 (in=f1) 

fine_ndk2  (in=f2); 

by join_id; 

if f1 and f2; 

run; 
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/* Computation of the attributes that represent the difference in physical characteristics of the 

images */ 

/*Set JOIN=”join”*/ 

 

data  joins_diff (drop=join_id); 

set  finefine; 

HEIGHT_DIFF = abs(HEIGHT_1 - HEIGHT_2); 

WIDTH_DIFF = abs(WIDTH_1 - WIDTH_2); 

N_LINES_DIFF = abs(N_LINES_1 - N_LINES_2) ; 

AVG_LINE_DIFF = abs(AVG_LINE_H_1 - AVG_LINE_H_2); 

AVG_LINE_SPAC_DIFF = abs(AVG_LINE_SPAC_1 - AVG_LINE_SPAC_2); 

LEFT_MRGN_DIFF = abs(LEFT_MRGN_1 - LEFT_MRGN_2); 

RIGHT_MRGN_DIFF = abs(RIGHT_MRGN_1 - RIGHT_MRGN_2); 

TOP_MRGN_DIFF = abs(TOP_MRGN_1 - TOP_MRGN_2); 

BOTTOM_MRGN_DIFF = abs(BOTTOM_MRGN_1-BOTTOM_MRGN_2); 

COMPLETENESS_CALC = (COMPLETENESS_1 * COMPLETENESS_2); 

WIDTH_WRITTEN_DIFF=abs(width_written_1 - width_written_2); 

HEIGHT_WRITTEN_DIFF=abs( height_written_1 -  height_written_2); 

JOIN='JOIN'; 

run; 

 

/*Write a dataset with all “non join” and “join”*/ 

 

data dataset; 

set  IMAGE_DIFF_JOIN 

     joins_diff  ; 

run; 

 

/*compute the concatenation of the quality descriptions and set BIFOLIO=1 if both or none of 

the images are bifolio, 0 otherwise*/ 
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data dataset2; 

set dataset; 

length   QTY_CONC  $90.; 

QTY_CONC= frag_qty_1||"-"||frag_qty_2; 

if bif_1 ='Y' and bif_2='Y' then do; 

        bif=1; 

end; 

if (bif_1 ='Y' and bif_2='N') or (bif_1 ='N' and bif_2='Y') then do; 

        bif= 0; 

end; 

if bif_1 ='N' and bif_2='N' then do; 

        bif=1; 

end; 

run; 

 

data dataset2; 

set dataset2; 

QTY_CONC =compress(QTY_CONC) ; 

run; 

 

/* set QTY_CONC=”a-b” = QTY_CONC=”b-a” */ 

 

data libreria.dataset2; 

set dataset2; 

if QTY_CONC='-Empty' then QTY_CONC ='Empty-'; 

if QTY_CONC='-Noisy' then QTY_CONC ='Noisy-'; 

if QTY_CONC='-NotText' then QTY_CONC ='NotText-'; 

if QTY_CONC='-Problematic' then QTY_CONC ='Problematic-'; 

if QTY_CONC='-SuspectedProblemtic' then QTY_CONC ='SuspectedProblemtic-'; 

if QTY_CONC='-good' then QTY_CONC ='good-'; 
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if QTY_CONC='-stdRowsHeightlessthan5' then QTY_CONC ='stdRowsHeightlessthan5-'; 

if QTY_CONC='-suspectedEmpty' then QTY_CONC ='suspectedEmpty-'; 

if QTY_CONC='Empty-Noisy' then QTY_CONC ='Noisy-Empty'; 

if QTY_CONC='Empty-NotText' then QTY_CONC ='NotText-Empty'; 

if QTY_CONC='Empty-Problematic' then QTY_CONC ='Problematic-Empty'; 

if QTY_CONC='Empty-SuspectedProblemtic' then QTY_CONC ='SuspectedProblemtic-

Empty'; 

if QTY_CONC='Empty-good' then QTY_CONC ='good-Empty'; 

if QTY_CONC='Empty-stdRowsHeightlessthan5' then QTY_CONC 

='stdRowsHeightlessthan5-Empty'; 

if QTY_CONC='Empty-suspectedEmpty' then QTY_CONC ='suspectedEmpty-Empty'; 

if QTY_CONC='Noisy-NotText' then QTY_CONC ='NotText-Noisy'; 

if QTY_CONC='Noisy-Problematic' then QTY_CONC ='Problematic-Noisy'; 

if QTY_CONC='Noisy-SuspectedProblemtic' then QTY_CONC ='SuspectedProblemtic-Noisy'; 

if QTY_CONC='Noisy-good' then QTY_CONC ='good-Noisy'; 

if QTY_CONC='Noisy-stdRowsHeightlessthan5' then QTY_CONC ='stdRowsHeightlessthan5-

Noisy'; 

if QTY_CONC='Noisy-suspectedEmpty' then QTY_CONC ='suspectedEmpty-Noisy'; 

if QTY_CONC='NotText-Problematic' then QTY_CONC ='Problematic-NotText'; 

if QTY_CONC='NotText-Suspected Problemtic' then QTY_CONC ='SuspectedProblemtic-

NotText'; 

if QTY_CONC='NotText-good' then QTY_CONC ='good-NotText'; 

if QTY_CONC='NotText-stdRowsHeightlessthan5' then QTY_CONC 

='stdRowsHeightlessthan5-NotText'; 

if QTY_CONC='NotText-suspectedEmpty' then QTY_CONC ='suspectedEmpty-NotText'; 

if QTY_CONC='Problematic-SuspectedProblemtic' then QTY_CONC ='SuspectedProblemtic-

Problematic'; 

if QTY_CONC='Problematic-good' then QTY_CONC ='good-Problematic'; 

if QTY_CONC='Problematic-stdRowsHeightlessthan5' then QTY_CONC 

='stdRowsHeightlessthan5-Problematic'; 

if QTY_CONC='Problematic -suspected Empty' then QTY_CONC ='suspectedEmpty-

Problematic'; 
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if QTY_CONC='SuspectedProblemtic-good' then QTY_CONC ='good-SuspectedProblemtic'; 

if QTY_CONC='SuspectedProblemtic-stdRowsHeightlessthan5' then QTY_CONC 

='stdRowsHeightlessthan5-SuspectedProblemtic'; 

if QTY_CONC='SuspectedProblemtic-suspectedEmpty' then QTY_CONC ='suspectedEmpty-

SuspectedProblemtic'; 

if QTY_CONC='SuspectedProblemtic-suspectedNoisy' then QTY_CONC ='suspectedNoisy-

SuspectedProblemtic'; 

if QTY_CONC='good-stdRowsHeightlessthan5' then QTY_CONC ='stdRowsHeightlessthan5-

good'; 

if QTY_CONC='good-suspectedEmpty' then QTY_CONC ='suspectedEmpty-good'; 

if QTY_CONC='stdRowsHeightlessthan5-suspectedEmpty' then QTY_CONC 

='suspectedEmpty-stdRowsHeightlessthan 5'; 

run; 
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Appendix B 

What follows is an example of the problem replicated subtree. The decision tree needed to 

represent the simple rule: 

 

!"   !""#$%&"!! = ’!’  !"#  !""#$%&"!! = ’!’   !"   !""#$%&"!! = ’!’  !"#  !""#$%&"!! =

’!’   !ℎ!"  !"#$$ = ’!"’otherwise  class = ’KO’   

 

 

 

it has 13 nodes and seven leaves. It can be seen that the subtree with root Attribute! = ’C’ is 

replicated.  
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Appendix C 

This appendix reports rules learnt by RIPPER rule–inducer when no feature selection is 

applied and when CFS correlation–based multivariate filter is applied. The numbers in the 

parenthesis represent correctly classified instances/ incorrectly classified instances in the 

validation set. 

 

RIPPER without CFS 

 

(WIDTH_DIFF <= 0.449075) and (AVG_LINE_SPAC_DIFF <= 0.048739) and (HEIGHT_DIFF 

<= 0.302982) and (WIDTH_DIFF <= 0.126667) => JOIN=JOIN (1309.0/24.0) 

 

(WIDTH_DIFF <= 1.03937) and (COMPLETENESS_Measure >= 0.6975) and 

(AVG_LINE_SPAC_DIFF <= 0.048739) and (width_written_diff <= 0.484271) and 

(WIDTH_DIFF <= 0.325382) and (AVG_LINE_DIFF <= 0.021957) => JOIN=JOIN (541.0/22.0) 

 

(AVG_LINE_SPAC_DIFF <= 0.086793) and (WIDTH_DIFF <= 1.390411) and 

(COMPLETENESS_Measure >= 0.7189) and (width_written_diff <= 0.535088) and 

(AVG_LINE_SPAC_DIFF <= 0.031496) and (HEIGHT_DIFF <= 0.603349) and (WIDTH_DIFF 

<= 0.325382) and (width_written_diff <= 0.300336) => JOIN=JOIN (32.0/1.0) 

 

(AVG_LINE_SPAC_DIFF <= 0.102427) and (WIDTH_DIFF <= 1.432432) and 

(COMPLETENESS_Measure >= 0.7426) and (width_written_diff <= 0.545675) and 

(AVG_LINE_SPAC_DIFF <= 0.046452) and (height_written_diff <= 0.692668) and 

(WIDTH_DIFF >= 0.872966) and (RIGHT_MRGN_DIFF <= 1.046409) => JOIN=JOIN 

(143.0/2.0) 

 

(WIDTH_DIFF <= 1.03937) and (COMPLETENESS_Measure >= 0.7396) and 

(LEFT_MRGN_DIFF <= 0.662341) and (COMPLETENESS_Measure >= 0.8544) and 

(AVG_LINE_SPAC_DIFF <= 0.153509) => JOIN=JOIN (708.0/169.0) 

 

(AVG_LINE_SPAC_DIFF <= 0.086667) and (WIDTH_DIFF <= 1.073068) and 

(COMPLETENESS_Measure >= 0.7426) and (LEFT_MRGN_DIFF <= 0.662341) and 



 

80 

(height_written_diff <= 0.824561) and (WIDTH_DIFF <= 0.679288) and (AVG_LINE_DIFF <= 

0.023661) => JOIN=JOIN (108.0/18.0) 

 

(AVG_LINE_DIFF <= 0.047381) and (WIDTH_DIFF <= 0.988333) and 

(COMPLETENESS_Measure >= 0.7426) and (width_written_diff <= 0.491228) and 

(TOP_MRGN_DIFF >= 0.472752) and (Qty_1_2 = stdRowsHeightlessthan5-good) and 

(COMPLETENESS_Measure >= 0.7921) => JOIN=JOIN (45.0/2.0) 

 

(AVG_LINE_DIFF <= 0.031798) and (WIDTH_DIFF <= 0.976378) and 

(AVG_LINE_SPAC_DIFF <= 0.022222) and (width_written_diff <= 0.483221) and 

(HEIGHT_DIFF <= 0.850394) and (RIGHT_MRGN_DIFF <= 0.362416) and 

(COMPLETENESS_Measure >= 0.513) => JOIN=JOIN (99.0/2.0) 

 

(AVG_LINE_SPAC_DIFF <= 0.102522) and (WIDTH_DIFF <= 1.079456) and 

(COMPLETENESS_Measure >= 0.735) and (LEFT_MRGN_DIFF <= 0.653509) and 

(COMPLETENESS_Measure >= 0.8188) and (COMPLETENESS_Measure <= 0.8256) and 

(BOTTOM_MRGN_DIFF <= 0.614173) => JOIN=JOIN (59.0/0.0) 

 

(AVG_LINE_DIFF <= 0.031496) and (WIDTH_DIFF <= 0.961901) and 

(AVG_LINE_SPAC_DIFF <= 0.033899) and (HEIGHT_DIFF <= 1.190789) and 

(width_written_diff <= 0.408163) and (AVG_LINE_DIFF <= 0.009252) and (width_written_diff 

<= 0.207211) => JOIN=JOIN (66.0/11.0) 

 

(AVG_LINE_SPAC_DIFF <= 0.094674) and (WIDTH_DIFF <= 1.484649) and 

(COMPLETENESS_Measure >= 0.6612) and (RIGHT_MRGN_DIFF <= 0.403509) and 

(BOTTOM_MRGN_DIFF <= 0.264715) and (RIGHT_MRGN_DIFF <= 0.1596) and 

(COMPLETENESS_Measure <= 0.7826) => JOIN=JOIN (116.0/25.0) 

 

(AVG_LINE_DIFF <= 0.028198) and (AVG_LINE_SPAC_DIFF <= 0.023622) and 

(width_written_diff <= 0.789035) and (WIDTH_DIFF <= 1.079449) and (width_written_diff <= 

0.483333) and (COMPLETENESS_Measure >= 0.5694) and (HEIGHT_DIFF >= 1.408163) 

and (height_written_diff <= 2.294335) and (AVG_LINE_SPAC_DIFF <= 0.013605) => 

JOIN=JOIN (41.0/3.0) 
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(AVG_LINE_SPAC_DIFF <= 0.086667) and (AVG_LINE_DIFF <= 0.027888) and 

(HEIGHT_DIFF <= 1.040816) and (width_written_diff <= 0.500089) and 

(AVG_LINE_SPAC_DIFF <= 0.033333) and (Qty_1_2 = good-good) and (AVG_LINE_DIFF 

<= 0.010526) => JOIN=JOIN (176.0/49.0) 

 

(AVG_LINE_DIFF <= 0.047381) and (WIDTH_DIFF <= 1.484649) and 

(COMPLETENESS_Measure >= 0.7189) and (LEFT_MRGN_DIFF <= 0.252344) and 

(width_written_diff <= 0.73775) and (HEIGHT_DIFF >= 1.462585) and (RIGHT_MRGN_DIFF 

>= 0.668027) => JOIN=JOIN (73.0/5.0) 

 

(AVG_LINE_SPAC_DIFF <= 0.086793) and (AVG_LINE_DIFF <= 0.027888) and 

(RIGHT_MRGN_DIFF <= 0.44) and (width_written_diff <= 0.844595) and (width_written_diff 

<= 0.129649) and (height_written_diff <= 0.207667) => JOIN=JOIN (37.0/3.0) 

 

(AVG_LINE_SPAC_DIFF <= 0.086793) and (AVG_LINE_DIFF <= 0.028025) and 

(HEIGHT_DIFF <= 0.761031) and (width_written_diff <= 0.5) and (BOTTOM_MRGN_DIFF <= 

0.186667) and (width_written_diff <= 0.218158) and (LEFT_MRGN_DIFF <= 0.606667) and 

(TOP_MRGN_DIFF >= 0.023265) => JOIN=JOIN (25.0/4.0) 

 

(AVG_LINE_SPAC_DIFF <= 0.086793) and (AVG_LINE_DIFF <= 0.028025) and 

(RIGHT_MRGN_DIFF <= 0.450131) and (width_written_diff <= 0.826667) and 

(AVG_LINE_SPAC_DIFF <= 0.007075) and (AVG_LINE_DIFF <= 0.006803) and 

(AVG_LINE_DIFF >= 0.006579) => JOIN=JOIN (27.0/0.0) 

 

(AVG_LINE_SPAC_DIFF <= 0.102522) and (AVG_LINE_DIFF <= 0.028025) and 

(RIGHT_MRGN_DIFF <= 0.44) and (width_written_diff <= 0.71) and (width_written_diff <= 

0.126443) and (BOTTOM_MRGN_DIFF <= 0.384777) and (COMPLETENESS_Measure >= 

0.7176) and (TOP_MRGN_DIFF >= 0.373018) => JOIN=JOIN (27.0/2.0) 

 

(AVG_LINE_SPAC_DIFF <= 0.086667) and (AVG_LINE_DIFF <= 0.028025) and 

(RIGHT_MRGN_DIFF <= 0.645722) and (width_written_diff <= 0.789035) and 

(AVG_LINE_SPAC_DIFF <= 0.025591) and (WIDTH_DIFF <= 0.23) and 

(RIGHT_MRGN_DIFF >= 0.388158) and (BOTTOM_MRGN_DIFF >= 0.366332) => 

JOIN=JOIN (22.0/1.0) 
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(AVG_LINE_SPAC_DIFF <= 0.095238) and (AVG_LINE_DIFF <= 0.028018) and 

(RIGHT_MRGN_DIFF <= 0.44) and (LEFT_MRGN_DIFF <= 1.307087) and 

(COMPLETENESS_Measure >= 0.6816) and (AVG_LINE_SPAC_DIFF >= 0.046667) and 

(width_written_diff >= 1.270843) and (HEIGHT_DIFF <= 2.912281) => JOIN=JOIN 

(131.0/22.0) 

 

(AVG_LINE_SPAC_DIFF <= 0.095238) and (WIDTH_DIFF <= 2.002272) and 

(AVG_LINE_DIFF <= 0.042949) and (width_written_diff <= 1.505051) and 

(AVG_LINE_SPAC_DIFF <= 0.034014) and (Qty_1_2 = good-good) and (LEFT_MRGN_DIFF 

<= 0.373333) and (height_written_diff <= 0.445324) and (COMPLETENESS_Measure <= 

0.68) => JOIN=JOIN (31.0/2.0) 

(AVG_LINE_SPAC_DIFF <= 0.094595) and (AVG_LINE_DIFF <= 0.028018) and 

(RIGHT_MRGN_DIFF <= 0.446667) and (width_written_diff <= 1.503937) and 

(LEFT_MRGN_DIFF <= 1.36) and (AVG_LINE_DIFF >= 0.019691) and (WIDTH_DIFF >= 

1.150555) and (BOTTOM_MRGN_DIFF >= 0.90604) => JOIN=JOIN (54.0/9.0) 

 

(AVG_LINE_SPAC_DIFF <= 0.086793) and (WIDTH_DIFF <= 1.913043) and 

(COMPLETENESS_Measure >= 0.8188) and (LEFT_MRGN_DIFF <= 0.415187) and 

(height_written_diff >= 1.499657) and (width_written_diff <= 1.412626) and (width_written_diff 

>= 0.877193) and (LEFT_MRGN_DIFF >= 0.14182) => JOIN=JOIN (58.0/8.0) 

 

(AVG_LINE_SPAC_DIFF <= 0.095238) and (AVG_LINE_DIFF <= 0.027517) and 

(HEIGHT_DIFF <= 1.328859) and (width_written_diff <= 0.440945) and (LEFT_MRGN_DIFF 

>= 5.106667) and (AVG_LINE_SPAC_DIFF <= 0.041339) and (TOP_MRGN_DIFF <= 0.42) 

=> JOIN=JOIN (63.0/15.0) 

 

(AVG_LINE_SPAC_DIFF <= 0.095614) and (AVG_LINE_DIFF <= 0.027524) and 

(HEIGHT_DIFF <= 1.047619) and (WIDTH_DIFF <= 0.461923) and (AVG_LINE_SPAC_DIFF 

<= 0.020408) and (TOP_MRGN_DIFF <= 0.075298) => JOIN=JOIN (38.0/8.0) 

 

(AVG_LINE_SPAC_DIFF <= 0.095614) and (WIDTH_DIFF <= 2.462998) and 

(COMPLETENESS_Measure >= 0.744) and (COMPLETENESS_Measure >= 0.874) and 

(HEIGHT_DIFF >= 2.839912) and (N_LINES_DIFF <= 3) and (LEFT_MRGN_DIFF <= 
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0.984649) => JOIN=JOIN (52.0/0.0) 

 

(AVG_LINE_SPAC_DIFF <= 0.094488) and (AVG_LINE_DIFF <= 0.023663) and 

(width_written_diff <= 0.834343) and (AVG_LINE_SPAC_DIFF <= 0.013605) and 

(TOP_MRGN_DIFF <= 0.206667) and (BOTTOM_MRGN_DIFF >= 1.160191) and 

(height_written_diff <= 0.263078) => JOIN=JOIN (21.0/1.0) 

 

(AVG_LINE_SPAC_DIFF <= 0.094595) and (AVG_LINE_DIFF <= 0.024123) and 

(width_written_diff <= 0.832364) and (AVG_LINE_SPAC_DIFF <= 0.022222) and 

(WIDTH_DIFF >= 5.558559) and (width_written_diff <= 0.063684) and (LEFT_MRGN_DIFF 

<= 0.415436) => JOIN=JOIN (19.0/0.0) 

 

(AVG_LINE_SPAC_DIFF <= 0.095581) and (AVG_LINE_DIFF <= 0.047619) and 

(HEIGHT_DIFF <= 1.775175) and (WIDTH_DIFF <= 1.355591) and (width_written_diff <= 

0.802162) and (HEIGHT_DIFF >= 1.46) and (AVG_LINE_SPAC_DIFF >= 0.07809) and 

(AVG_LINE_SPAC_DIFF <= 0.08) => JOIN=JOIN (28.0/0.0) 

 

(AVG_LINE_SPAC_DIFF <= 0.095614) and (WIDTH_DIFF <= 2.040587) and (HEIGHT_DIFF 

<= 0.666667) and (WIDTH_DIFF <= 0.452381) and (height_written_diff <= 0.387755) and 

(BOTTOM_MRGN_DIFF <= 0.055) => JOIN=JOIN (53.0/18.0) 

 

(AVG_LINE_DIFF <= 0.047619) and (AVG_LINE_SPAC_DIFF <= 0.086667) and 

(WIDTH_DIFF <= 2.251969) and (width_written_diff <= 1.088435) and (RIGHT_MRGN_DIFF 

<= 0.382713) and (HEIGHT_DIFF <= 1.017695) and (height_written_diff >= 2.095008) and 

(N_LINES_DIFF <= 6) => JOIN=JOIN (26.0/3.0) 

 

(AVG_LINE_DIFF <= 0.047619) and (AVG_LINE_SPAC_DIFF <= 0.086667) and 

(HEIGHT_DIFF <= 1.32) and (AVG_LINE_DIFF <= 0) => JOIN=JOIN (51.0/14.0) 

 

(AVG_LINE_SPAC_DIFF <= 0.120157) and (AVG_LINE_DIFF <= 0.047619) and 

(LEFT_MRGN_DIFF <= 0.466216) and (width_written_diff <= 0.741361) and 

(RIGHT_MRGN_DIFF <= 0.19) and (height_written_diff <= 0.633333) and 

(TOP_MRGN_DIFF >= 0.538246) and (WIDTH_DIFF >= 0.413333) => JOIN=JOIN (21.0/1.0) 
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=> JOIN=NON_JOIN (62440.0/2832.0) 

 

RIPPER with CFS 

 

(WIDTH_DIFF <= 0.449075) and (AVG_LINE_SPAC_DIFF <= 0.048739) and (HEIGHT_DIFF 

<= 0.3) and (width_written_diff <= 0.242424) and (RIGHT_MRGN_DIFF <= 0.110236) => 

JOIN=JOIN (1039.0/2.0) 

 

(WIDTH_DIFF <= 0.986518) and (AVG_LINE_SPAC_DIFF <= 0.048894) and 

(width_written_diff <= 0.535354) and (WIDTH_DIFF <= 0.255207) and (AVG_LINE_DIFF <= 

0.023661) and (HEIGHT_DIFF <= 1.90179) => JOIN=JOIN (762.0/38.0) 

 

(WIDTH_DIFF <= 1.342145) and (AVG_LINE_SPAC_DIFF <= 0.057018) and 

(width_written_diff <= 0.535354) and (AVG_LINE_DIFF <= 0.024009) and 

(RIGHT_MRGN_DIFF <= 0.36) and (RIGHT_MRGN_DIFF >= 0.163676) and 

(TOP_MRGN_DIFF <= 0.426667) => JOIN=JOIN (270.0/29.0) 

(WIDTH_DIFF <= 1.079456) and (AVG_LINE_SPAC_DIFF <= 0.047244) and (HEIGHT_DIFF 

<= 0.868421) and (width_written_diff <= 0.528131) and (AVG_LINE_SPAC_DIFF <= 

0.024547) and (RIGHT_MRGN_DIFF <= 0.30303) and (AVG_LINE_DIFF <= 0.021858) and 

(RIGHT_MRGN_DIFF <= 0.07931) => JOIN=JOIN (47.0/2.0) 

 

(WIDTH_DIFF <= 0.99542) and (AVG_LINE_SPAC_DIFF <= 0.061773) and (HEIGHT_DIFF 

<= 0.925439) and (AVG_LINE_SPAC_DIFF <= 0.02193) and (HEIGHT_DIFF <= 0.103509) 

=> JOIN=JOIN (154.0/21.0) 

 

(WIDTH_DIFF <= 1.03937) and (AVG_LINE_SPAC_DIFF <= 0.102427) and 

(width_written_diff <= 1.080062) and (AVG_LINE_SPAC_DIFF <= 0.022544) and 

(AVG_LINE_DIFF <= 0.031496) and (TOP_MRGN_DIFF <= 0.160465) and 

(TOP_MRGN_DIFF >= 0.127193) and (width_written_diff >= 0.243714) => JOIN=JOIN 

(40.0/1.0) 

 

(AVG_LINE_SPAC_DIFF <= 0.102522) and (WIDTH_DIFF <= 1.425197) and 

(width_written_diff <= 1.145695) and (height_written_diff <= 0.824561) and 

(AVG_LINE_SPAC_DIFF <= 0.024631) and (AVG_LINE_DIFF <= 0.020408) and 
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(WIDTH_DIFF <= 0.874016) and (height_written_diff >= 0.195946) and 

(AVG_LINE_SPAC_DIFF <= 0.007162) and (width_written_diff >= 0.401007) => JOIN=JOIN 

(66.0/2.0) 

 

(AVG_LINE_SPAC_DIFF <= 0.102522) and (WIDTH_DIFF <= 1.079449) and 

(width_written_diff <= 0.535354) and (height_written_diff <= 1.692982) and 

(AVG_LINE_SPAC_DIFF <= 0.028864) and (AVG_LINE_DIFF <= 0.027211) and 

(width_written_diff <= 0.17411) and (TOP_MRGN_DIFF >= 0.291391) => JOIN=JOIN 

(47.0/2.0) 

 

(AVG_LINE_SPAC_DIFF <= 0.102522) and (WIDTH_DIFF <= 1.438596) and 

(width_written_diff <= 1.081915) and (WIDTH_DIFF <= 0.449075) and (HEIGHT_DIFF <= 

0.816316) and (BOTTOM_MRGN_DIFF <= 0.164502) and (RIGHT_MRGN_DIFF <= 

0.298246) and (HEIGHT_DIFF >= 0.662281) => JOIN=JOIN (51.0/2.0) 

 

(AVG_LINE_DIFF <= 0.047381) and (WIDTH_DIFF <= 1.484649) and (width_written_diff <= 

0.797281) and (AVG_LINE_SPAC_DIFF <= 0.125984) and (RIGHT_MRGN_DIFF <= 

0.382713) and (BOTTOM_MRGN_DIFF <= 0.337314) and (BOTTOM_MRGN_DIFF >= 

0.225926) and (AVG_LINE_DIFF >= 0.020101) and (LEFT_MRGN_DIFF >= 0.341732) and 

(TOP_MRGN_DIFF >= 0.102362) => JOIN=JOIN (70.0/5.0) 

 

(AVG_LINE_SPAC_DIFF <= 0.102522) and (WIDTH_DIFF <= 1.438596) and 

(width_written_diff <= 0.987523) and (LEFT_MRGN_DIFF <= 0.506667) and 

(height_written_diff <= 0.785088) and (width_written_diff <= 0.499487) and 

(AVG_LINE_SPAC_DIFF <= 0.055118) and (height_written_diff <= 0.312299) and 

(RIGHT_MRGN_DIFF >= 0.8415) and (AVG_LINE_SPAC_DIFF >= 0.031149) => JOIN=JOIN 

(40.0/0.0) 

 

(AVG_LINE_SPAC_DIFF <= 0.102522) and (WIDTH_DIFF <= 1.445175) and 

(width_written_diff <= 0.987523) and (AVG_LINE_DIFF <= 0.04386) and (WIDTH_DIFF <= 

0.266803) and (AVG_LINE_SPAC_DIFF <= 0.020408) and (AVG_LINE_DIFF <= 0.008246) 

and (RIGHT_MRGN_DIFF <= 0.342105) => JOIN=JOIN (39.0/5.0) 

 

(AVG_LINE_SPAC_DIFF <= 0.102427) and (WIDTH_DIFF <= 1.484649) and 
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(width_written_diff <= 1.342105) and (AVG_LINE_DIFF <= 0.04386) and (LEFT_MRGN_DIFF 

<= 0.503937) and (height_written_diff <= 0.791565) and (TOP_MRGN_DIFF >= 0.496063) 

and (width_written_diff <= 0.401575) => JOIN=JOIN (81.0/21.0) 

 

(AVG_LINE_SPAC_DIFF <= 0.102522) and (WIDTH_DIFF <= 1.484649) and 

(AVG_LINE_DIFF <= 0.04386) and (LEFT_MRGN_DIFF <= 0.533608) and (WIDTH_DIFF <= 

0.473333) and (height_written_diff <= 0.300493) and (height_written_diff >= 0.204082) and 

(AVG_LINE_SPAC_DIFF <= 0.026667) => JOIN=JOIN (27.0/1.0) 

 

(AVG_LINE_SPAC_DIFF <= 0.102522) and (WIDTH_DIFF <= 1.445175) and 

(width_written_diff <= 1.086614) and (AVG_LINE_DIFF <= 0.04386) and 

(AVG_LINE_SPAC_DIFF <= 0.02193) and (RIGHT_MRGN_DIFF <= 0.198246) and 

(BOTTOM_MRGN_DIFF <= 0.148238) and (LEFT_MRGN_DIFF <= 0.211936) => 

JOIN=JOIN (39.0/7.0) 

 

(AVG_LINE_SPAC_DIFF <= 0.102427) and (WIDTH_DIFF <= 1.484649) and 

(AVG_LINE_DIFF <= 0.04386) and (width_written_diff <= 1.342105) and 

(RIGHT_MRGN_DIFF <= 0.403509) and (AVG_LINE_SPAC_DIFF <= 0.013605) and 

(LEFT_MRGN_DIFF >= 0.527014) and (WIDTH_DIFF <= 0.283784) => JOIN=JOIN (27.0/3.0) 

 

(AVG_LINE_SPAC_DIFF <= 0.118687) and (WIDTH_DIFF <= 1.966341) and 

(LEFT_MRGN_DIFF <= 0.533608) and (AVG_LINE_DIFF <= 0.040802) and 

(width_written_diff <= 1.561297) and (AVG_LINE_DIFF >= 0.03937) and (AVG_LINE_DIFF 

<= 0.039474) => JOIN=JOIN (54.0/0.0) 

 

(AVG_LINE_SPAC_DIFF <= 0.102522) and (WIDTH_DIFF <= 1.438596) and 

(width_written_diff <= 0.797281) and (AVG_LINE_DIFF <= 0.043773) and (width_written_diff 

<= 0.133858) and (AVG_LINE_SPAC_DIFF >= 0.092715) and (AVG_LINE_DIFF <= 

0.015853) and (WIDTH_DIFF >= 0.065459) => JOIN=JOIN (40.0/3.0) 

 

(AVG_LINE_SPAC_DIFF <= 0.095713) and (WIDTH_DIFF <= 1.445092) and 

(AVG_LINE_DIFF <= 0.031717) and (LEFT_MRGN_DIFF <= 0.404514) and 

(height_written_diff <= 0.756023) and (WIDTH_DIFF <= 0.633555) and (TOP_MRGN_DIFF 

<= 0.085776) and (height_written_diff <= 0.109506) => JOIN=JOIN (27.0/2.0) 



 

87 

 

(AVG_LINE_SPAC_DIFF <= 0.094674) and (width_written_diff <= 0.756581) and 

(AVG_LINE_DIFF <= 0.031496) and (AVG_LINE_SPAC_DIFF <= 0.047769) and 

(height_written_diff <= 0.548662) and (TOP_MRGN_DIFF <= 0.246667) and 

(width_written_diff <= 0.210884) and (height_written_diff <= 0.204595) => JOIN=JOIN 

(84.0/13.0) 

 

(AVG_LINE_SPAC_DIFF <= 0.094667) and (WIDTH_DIFF <= 1.965757) and 

(AVG_LINE_DIFF <= 0.048449) and (width_written_diff <= 1.577218) and 

(LEFT_MRGN_DIFF <= 0.364569) and (WIDTH_DIFF <= 0.266803) and 

(RIGHT_MRGN_DIFF >= 0.637795) and (width_written_diff <= 0.642544) and 

(LEFT_MRGN_DIFF <= 0.204724) => JOIN=JOIN (33.0/1.0) 

 

(AVG_LINE_SPAC_DIFF <= 0.095713) and (WIDTH_DIFF <= 1.445092) and 

(AVG_LINE_DIFF <= 0.048246) and (height_written_diff <= 0.609649) and (WIDTH_DIFF <= 

0.629921) and (BOTTOM_MRGN_DIFF <= 0.326531) and (AVG_LINE_SPAC_DIFF <= 

0.04069) => JOIN=JOIN (103.0/39.0) 

 

(AVG_LINE_SPAC_DIFF <= 0.095713) and (AVG_LINE_DIFF <= 0.031496) and 

(RIGHT_MRGN_DIFF <= 0.436298) and (LEFT_MRGN_DIFF <= 0.735433) and 

(width_written_diff <= 1.559055) and (WIDTH_DIFF >= 0.986663) and (AVG_LINE_DIFF >= 

0.015748) and (BOTTOM_MRGN_DIFF >= 0.878596) => JOIN=JOIN (63.0/11.0) 

 

(AVG_LINE_SPAC_DIFF <= 0.12) and (AVG_LINE_DIFF <= 0.031496) and 

(width_written_diff <= 0.747427) and (AVG_LINE_SPAC_DIFF <= 0.022222) and 

(WIDTH_DIFF >= 5.251078) and (height_written_diff <= 0.42517) and (WIDTH_DIFF <= 

7.118403) => JOIN=JOIN (92.0/24.0) 

 

(AVG_LINE_SPAC_DIFF <= 0.095713) and (AVG_LINE_DIFF <= 0.031496) and 

(HEIGHT_DIFF <= 1.328859) and (width_written_diff <= 0.680272) and 

(AVG_LINE_SPAC_DIFF <= 0.048661) and (WIDTH_DIFF >= 4.98) and (TOP_MRGN_DIFF 

<= 0.308725) and (width_written_diff <= 0.41844) and (LEFT_MRGN_DIFF >= 5.48759) => 

JOIN=JOIN (44.0/8.0) 
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(AVG_LINE_SPAC_DIFF <= 0.095713) and (WIDTH_DIFF <= 2.562041) and 

(AVG_LINE_DIFF <= 0.047381) and (LEFT_MRGN_DIFF <= 0.533608) and 

(RIGHT_MRGN_DIFF <= 0.432021) and (AVG_LINE_SPAC_DIFF >= 0.043155) and 

(TOP_MRGN_DIFF <= 0.421809) and (width_written_diff >= 1.270843) and 

(RIGHT_MRGN_DIFF >= 0.296053) and (RIGHT_MRGN_DIFF >= 0.417323) => JOIN=JOIN 

(33.0/0.0) 

 

(AVG_LINE_SPAC_DIFF <= 0.118687) and (WIDTH_DIFF <= 1.944882) and 

(LEFT_MRGN_DIFF <= 0.364569) and (width_written_diff <= 0.771654) and 

(AVG_LINE_SPAC_DIFF >= 0.11811) and (WIDTH_DIFF >= 0.755906) => JOIN=JOIN 

(48.0/0.0) 

 

(AVG_LINE_SPAC_DIFF <= 0.086793) and (WIDTH_DIFF <= 1.938272) and 

(width_written_diff <= 1.342105) and (AVG_LINE_DIFF <= 0.042949) and 

(RIGHT_MRGN_DIFF <= 0.403509) and (width_written_diff >= 1.270843) and 

(RIGHT_MRGN_DIFF >= 0.209459) and (LEFT_MRGN_DIFF <= 0.508074) => JOIN=JOIN 

(43.0/1.0) 

 

(AVG_LINE_SPAC_DIFF <= 0.102522) and (WIDTH_DIFF <= 1.966341) and 

(RIGHT_MRGN_DIFF <= 0.254386) and (HEIGHT_DIFF <= 0.496063) and (WIDTH_DIFF <= 

0.391662) and (RIGHT_MRGN_DIFF >= 0.12214) => JOIN=JOIN (92.0/30.0) 

 

(AVG_LINE_SPAC_DIFF <= 0.095238) and (WIDTH_DIFF <= 2.562041) and 

(AVG_LINE_DIFF <= 0.047381) and (width_written_diff <= 1.577218) and 

(LEFT_MRGN_DIFF <= 0.221141) and (HEIGHT_DIFF <= 1.952341) and (HEIGHT_DIFF >= 

1.486961) and (AVG_LINE_SPAC_DIFF >= 0.044523) and (width_written_diff <= 0.88189) 

and (AVG_LINE_DIFF >= 0.020101) => JOIN=JOIN (43.0/2.0) 

 

(AVG_LINE_SPAC_DIFF <= 0.086793) and (WIDTH_DIFF <= 2.040587) and 

(AVG_LINE_DIFF <= 0.042949) and (RIGHT_MRGN_DIFF <= 0.257687) and 

(height_written_diff <= 3.14) and (TOP_MRGN_DIFF <= 0.236175) and (AVG_LINE_DIFF >= 

0.019121) and (BOTTOM_MRGN_DIFF <= 0.270515) and (BOTTOM_MRGN_DIFF >= 

0.190498) => JOIN=JOIN (40.0/8.0) 
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(AVG_LINE_SPAC_DIFF <= 0.082676) and (AVG_LINE_DIFF <= 0.031496) and 

(HEIGHT_DIFF <= 1.303134) and (RIGHT_MRGN_DIFF <= 0.432407) and 

(width_written_diff <= 0.492162) and (BOTTOM_MRGN_DIFF <= 0.138983) and 

(width_written_diff <= 0.245583) => JOIN=JOIN (35.0/8.0) 

 

(AVG_LINE_SPAC_DIFF <= 0.086793) and (AVG_LINE_DIFF <= 0.020926) and 

(HEIGHT_DIFF <= 1.28) and (AVG_LINE_SPAC_DIFF <= 0.034014) and (width_written_diff 

<= 0.676174) and (RIGHT_MRGN_DIFF >= 5.684564) => JOIN=JOIN (37.0/11.0) 

 

(AVG_LINE_SPAC_DIFF <= 0.095238) and (AVG_LINE_DIFF <= 0.031496) and 

(WIDTH_DIFF <= 2.164873) and (width_written_diff <= 1.583972) and 

(AVG_LINE_SPAC_DIFF <= 0.04844) and (AVG_LINE_DIFF <= 0.008344) and 

(AVG_LINE_DIFF >= 0.006489) and (AVG_LINE_DIFF <= 0.006711) and (WIDTH_DIFF <= 

1.033557) and (TOP_MRGN_DIFF <= 0.171053) => JOIN=JOIN (32.0/1.0) 

 

(AVG_LINE_SPAC_DIFF <= 0.095238) and (AVG_LINE_DIFF <= 0.027644) and 

(HEIGHT_DIFF <= 1.265957) and (HEIGHT_DIFF <= 0.518947) and 

(AVG_LINE_SPAC_DIFF <= 0.033784) and (AVG_LINE_DIFF <= 0.001312) and 

(LEFT_MRGN_DIFF >= 5.015673) => JOIN=JOIN (18.0/1.0) 

 

(AVG_LINE_SPAC_DIFF <= 0.153649) and (WIDTH_DIFF <= 1.446206) and 

(LEFT_MRGN_DIFF <= 0.533608) and (width_written_diff <= 0.76895) and 

(AVG_LINE_SPAC_DIFF >= 0.131748) and (AVG_LINE_SPAC_DIFF <= 0.135319) and 

(HEIGHT_DIFF >= 1.299213) and (AVG_LINE_DIFF <= 0.051647) and (AVG_LINE_DIFF >= 

0.043942) => JOIN=JOIN (43.0/0.0) 

 

(AVG_LINE_SPAC_DIFF <= 0.086793) and (WIDTH_DIFF <= 2.48304) and 

(width_written_diff <= 1.580392) and (LEFT_MRGN_DIFF <= 0.89612) and (AVG_LINE_DIFF 

<= 0.015748) and (AVG_LINE_DIFF <= 0) and (TOP_MRGN_DIFF >= 0.093333) and 

(width_written_diff >= 0.78) => JOIN=JOIN (26.0/0.0) 

 

(AVG_LINE_SPAC_DIFF <= 0.153549) and (WIDTH_DIFF <= 1.446206) and 

(LEFT_MRGN_DIFF <= 0.426667) and (height_written_diff <= 1.866667) and 

(AVG_LINE_SPAC_DIFF >= 0.125984) and (height_written_diff >= 1.651156) and 
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(BOTTOM_MRGN_DIFF <= 0.394737) => JOIN=JOIN (35.0/7.0) 

 

(AVG_LINE_SPAC_DIFF <= 0.086793) and (WIDTH_DIFF <= 1.438596) and 

(LEFT_MRGN_DIFF <= 0.544803) and (AVG_LINE_DIFF <= 0.042949) and (WIDTH_DIFF 

<= 0.462047) and (AVG_LINE_DIFF >= 0.040541) and (LEFT_MRGN_DIFF >= 0.415187) => 

JOIN=JOIN (24.0/1.0) 

 

(AVG_LINE_SPAC_DIFF <= 0.081769) and (AVG_LINE_DIFF <= 0.031496) and 

(HEIGHT_DIFF <= 1.043444) and (width_written_diff <= 0.680272) and (HEIGHT_DIFF >= 

0.995168) and (RIGHT_MRGN_DIFF <= 0.428571) and (AVG_LINE_DIFF >= 0.012342) => 

JOIN=JOIN (23.0/0.0) 

 

(AVG_LINE_SPAC_DIFF <= 0.102522) and (WIDTH_DIFF <= 2.673713) and 

(width_written_diff <= 1.337108) and (RIGHT_MRGN_DIFF <= 1.020202) and 

(LEFT_MRGN_DIFF <= 0.364569) and (AVG_LINE_SPAC_DIFF <= 0.048193) and 

(width_written_diff <= 0.746667) and (LEFT_MRGN_DIFF >= 0.296667) and (WIDTH_DIFF 

>= 0.969239) => JOIN=JOIN (28.0/3.0) 

 

(AVG_LINE_SPAC_DIFF <= 0.153649) and (RIGHT_MRGN_DIFF <= 0.988189) and 

(LEFT_MRGN_DIFF <= 0.834646) and (width_written_diff <= 1.322835) and 

(LEFT_MRGN_DIFF <= 0.220472) and (WIDTH_DIFF <= 0.961901) and (HEIGHT_DIFF <= 

1.163271) and (TOP_MRGN_DIFF <= 0.251701) and (AVG_LINE_SPAC_DIFF >= 0.133414) 

and (BOTTOM_MRGN_DIFF >= 0.539858) => JOIN=JOIN (40.0/3.0) 

 

(AVG_LINE_SPAC_DIFF <= 0.086667) and (AVG_LINE_DIFF <= 0.033333) and 

(HEIGHT_DIFF <= 1.31) and (WIDTH_DIFF <= 1.182864) and (TOP_MRGN_DIFF >= 

0.658606) and (LEFT_MRGN_DIFF <= 0.511303) and (TOP_MRGN_DIFF >= 1.361924) => 

JOIN=JOIN (41.0/12.0) 

 

(AVG_LINE_SPAC_DIFF <= 0.086793) and (RIGHT_MRGN_DIFF <= 0.888158) and 

(width_written_diff <= 1.315566) and (LEFT_MRGN_DIFF <= 1.303357) and 

(AVG_LINE_SPAC_DIFF >= 0.069983) and (width_written_diff >= 1.256579) and 

(AVG_LINE_SPAC_DIFF <= 0.074561) => JOIN=JOIN (36.0/0.0) 
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(AVG_LINE_SPAC_DIFF <= 0.120157) and (RIGHT_MRGN_DIFF <= 0.982582) and 

(width_written_diff <= 1.176667) and (LEFT_MRGN_DIFF <= 1.396842) and 

(LEFT_MRGN_DIFF <= 0.192901) and (RIGHT_MRGN_DIFF >= 0.879502) and 

(AVG_LINE_SPAC_DIFF >= 0.09415) => JOIN=JOIN (19.0/0.0) 

 

(AVG_LINE_SPAC_DIFF <= 0.082676) and (WIDTH_DIFF <= 1.438596) and 

(AVG_LINE_DIFF <= 0.016463) and (WIDTH_DIFF <= 0.11193) and (AVG_LINE_DIFF >= 

0.007874) and (BOTTOM_MRGN_DIFF <= 0.442982) and (width_written_diff >= 0.910702) 

and (AVG_LINE_SPAC_DIFF >= 0.02) => JOIN=JOIN (28.0/1.0) 

 

(AVG_LINE_SPAC_DIFF <= 0.13781) and (RIGHT_MRGN_DIFF <= 0.888158) and 

(LEFT_MRGN_DIFF <= 0.76498) and (width_written_diff <= 1.176334) and 

(RIGHT_MRGN_DIFF <= 0.155366) and (RIGHT_MRGN_DIFF >= 0.102362) and 

(LEFT_MRGN_DIFF <= 0.206248) and (RIGHT_MRGN_DIFF <= 0.109649) => JOIN=JOIN 

(31.0/4.0) 

 

(AVG_LINE_SPAC_DIFF <= 0.095614) and (AVG_LINE_DIFF <= 0.028025) and 

(LEFT_MRGN_DIFF <= 0.735433) and (RIGHT_MRGN_DIFF <= 0.999123) and 

(height_written_diff <= 2.985503) and (BOTTOM_MRGN_DIFF <= 0.133858) and 

(width_written_diff >= 2.551667) and (LEFT_MRGN_DIFF >= 0.565826) => JOIN=JOIN 

(23.0/0.0) 

 

 => JOIN=NON_JOIN (62583.0/2866.0) 

 

 

 


