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Abstract

In this thesis we describe a new system for handwriting recognition and fast
retrieval of Hebrew historical manuscripts. After a processing stage, the system
efficiently finds a plausible reading, offers alternative readings (via an interac-
tive tool), and allows to search for strings in every alternative reading of every
manuscript in a large collection.

The system faces the problems of under-segmentation (e.g. touching charac-
ters) and over-segmentation (e.g. broken characters). We present a novel method
for over-segmentating touching characters. Then, in order to recognize letters
in the image, candidates letters are generated from an over-segmented image by
an improved method of feature-extraction. Letter candidates and their score are
stored in a reading graph, which resembles a candidate-lattice, that captures
alternative readings of the text image.

Experimental results on the Cairo Genizah show that our system successfully
reads degraded manuscripts containing many abnormal letters (degraded, discon-
nected and touching), as well as retrieves manuscripts even when the image of
the query string is degraded.
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1 Introduction

The Cairo Genizah is huge collection of Hebrew degraded documents, collected
between the 11th and the 19th centuries in Cairo, Egypt. Research on the
Genizah has progressed very slowly due to problems of accessibility. In recent
years Friedberg Genizah Project has been publishing the manuscripts on-line
(www.genizah.org). Conversion of the manuscripts to digital text and retrieval
of manuscripts by query can significantly contribute to the Genizah research.

In this thesis we describe our system for reading degraded historical manuscripts
(as presened in Figure 1) and retrieving manuscripts based on string-querie, even
when the strings are ambiguous in the manuscript. The system successfully reads
many of the Genizah manuscripts and makes it possible to search for strings
within them.

OCR (optical character recognition) systems are usually developed for a spe-
cific language and either for printed or handwritten documents. There are several
relevant approaches for OCR [1].

The earliest and simplest approach is template matching, which is computa-
tionally expensive and not robust. A more common approach is the statistical
approach [2], in which a segmented character image is represented as a feature-
vector in a fixed dimensional space. Another approach is the syntactic approach
that represent characters based on structure of primitives (parts of characters)
and the interrelationships between them.

Most OCR systems, based on the statistical approach, include four steps:
preprocessing, segmentation, feature extraction and classification. Preprocessing
includes image enhancement and binarization, noise removal, skewness correction,
and extraction of text lines. Segmentation is the step in which the image is divided
into characters (or other units). Feature extraction involves transforming the
character image (or other unit) into a feature vector. The last step, classification
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Figure 1: An examples of a text images from the Genizah that contain touching letters
and disconnected letters.




is where feature vectors are classified as specific characters.

After more than forty years of research OCR systems for machine-printed text
show impressive performance [3]. However, the recognition of handwriting is still
a central research field due to the inherent variance in handwriting. There are
two types of OCR for handwriting. On-line handwriting recognition where the
positions of the writer’s pen is extra data. Off-line handwriting recognition only
which analyzes only images.

One of the challenges in developing handwriting recognition for historical
manuscripts is the low quality that is typical to historical manuscripts which were
damaged by physical deterioration and environmental effects. This challenge is
reflected in all of the four steps mentioned above.

This thesis presents a system for handwriting recognition and fast retrieval
of Hebrew historical manuscripts written during the middle ages. The system
deals with over-segmentation (e.g. broken characters) and under-segmentation
(e.g. touching characters), and returns possible readings. The innovations of this
thesis are mainly in the dealing with unrecognized segments and in focusing on
several possible readings as even expert human readers often argue over the exact
reading. In addition, this thesis presents improved methods to perform feature
extraction, over-segmentation and fast retrieval.

The thesis is organized as follows. In Section 2 we review related work. In
Section 3 we introduce the document preprocessing and the over-segmentation
method we developed. In Section 4 we describe in detail our model, the conversion
of the image to our model, and three applications of this model we developed.
Section 5 gives experimental results, and finally, we summarize this thesis in
Section 6.



2 Related work

Current OCR work deals mainly with handwriting. More than a decade ago [/]
published a comprehensive survey on on-line and off-line handwriting recognition
and new papers continue to be published (e.g. [5, 6]). There are also several
full OCR systems for historical manuscripts, as reviewed in the next subsection.
In addition, there is work that tries to deal with specific challenges relevant
to historical manuscripts: feature extraction and classification methods (2.2);
segmentation (2.3); ambiguities in segmentation, linguistic knowledge (2.4); and
string search (2.5). At the end of this section we review properties of the Hebrew
language and related work about Hebrew document analysis (2.6).

2.1 OCR systems

In [7], an approach is presented for the recognition of early Christian Greek
manuscripts based on the detection of open and closed skeleton cavities. In the
manuscripts there is no space between consecutive words, so a segmentation-
free technique was used. In [8], an OCR methodology for recognizing historical
Greek manuscripts, without knowing the font, is presented. It consists of a clus-
tering scheme in order to group characters of similar shape and a manual step
where labels are assigned to the clusters. Finally, an SVM is exploited for char-
acter classification. In [9] a character recognition system is presented, able to
handle degraded manuscript documents. In contrast to the common approach
no binarization preprocessing is needed. Instead, a modern object recognition
methodology is adapted for the recognition: Interest points and local descriptors
are extracted and then clustered in order to localize characters. Finally, character
classification is based upon the localized characters.

2.2 Feature extraction and classification

One of the basic parts of OCR systems is the classification of character images.
The classification is usually done by representing the character image as a vector
of features and classifying the vector with a supervised learning algorithm. There
are many feature extraction methods proposed for isolated characters. Some of
the methods are based upon: moments [10], projections, crossings, profiles [11],
contours or chain codes [12] curvature, thinning [7], etc. In addition to these
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methods, there is a successful approach based upon recursive subdivisions of the
character image [13, 14, 15, 16]. In practice, it is common to combine different
methods possibly together with feature selection and dimension reduction.

The classification of the features is done by using common classification meth-
ods: statistical methods, kernel methods, artificial neural networks, etc. [17]
presents an overview of classification methods and a comparison. Support vector
machines (SVM) with radial basis function as the kernel often gives the highest
accuracy, this is also shown in [158, 19].

2.3 Segmentation

The feature extraction methods presented previously are primarily designed for
isolated character recognition. In practice, characters are not necessarily isolated,
and therefore another challenge is to segment the image so each character will be
one segment.

Under-segmentation is the main difficulty in character segmentation. There
are several possible reasons in handwriting: cursive writing, dense writing, ink-
spread, a writer’s mistake, bad storage conditions and environmental effects. A
common approach for dealing with this challenge is explicit segmentation [20]. In
this approach, touching characters are segmented into isolated characters. Heuris-
tics play a major role in explicit segmentation. In general, for every type of
touching characters there might be a need for a different method based upon
the nature of the relevant script and language (e.g. [21, 22, 10]). An example
of explicit segmentation are the drop-fall algorithms which attempt to build a
segmentation path by simulating a drop falling between two touching characters.
This class of algorithms was first proposed by [23] and still appears and evolves
in publications, e.g. [10, 24].

Over-segmentation is an additional difficulty in character segmentation that
arises for example from characters that are broken into several segments. A com-
mon solution is to join such small segments into a single segment. Morphological
operations might join such segments when they are very close [25, 26|, however
those operations can be destructive. Another solution is to join only small seg-
ments to the nearest character [¢], but obviously this is not a complete solution.

Another approach, called the holistic approach, is to process units larger
than characters in order to recognize whole words [27].  Another approach is
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segmentation-free. In this approach global operators such as cross-correlation
or finding interest points are applied to the image. Finally, the characters are
recognized by processing the operators’ results |7, 9].

2.4 Ambiguities in segmentation, and linguistic knowl-
edge

Explicit-segmentation methods segment touching characters into isolated charac-
ters. There are problems with this approach. For example, the two English letters
‘r’ and ‘n” may resemble the letter ‘m’ when adjacent. In such cases, several pos-
sible segmentations may be acceptable. Indeed, even an expert reader might not
be able to interpret the text correctly. Degraded manuscripts contain irregular
touching characters, character parts and noise. Therefore, in such documents,
ambiguities in segmentation of isolated characters are very common.

An over-segmentation of the image can help resolve ambiguities. Then deter-
mining the character is combined with recognition. An over-segmentation can
be represented by a graph, called a candidate lattice [28]. In this lattice, edges
represent candidate characters, where a candidate character is a set of consecu-
tive segments in the over-segmentation. A vertex represents the beginning of a
character. Each candidate character is recognized by a classifier. Each path in
the lattice represents possible segmentations of isolated characters. In [28], the
most plausible path is found by a dynamic-programming algorithm and linguistic
knowledge is used to verify this path. There are several variants of this approach.
For example, in [29], beam search is used, and in [30], the authors test various
language models combined with path evaluation in a lattice.

The incorporation of a language model is important due to the ambiguities in
segmentation and recognition. For example, in the text ‘my rnother’ it is clear
from context that the beginning of the second word should be ‘m’ and not ‘r’,‘n’.
A language model can be based upon a lexicon if all the words are from a known
collection. In [29], a text line image is matched against the lexicon entries to
obtain a reliable segmentation and retrieve valid text. When there is no lexicon,
but a corpus exists, we can build a language model based on the corpus, such
as a n-gram. In [30], the authors test n-gram models on characters, words and
combinations of the two.

The candidate lattice as described has some problems. First, noise in the



image may be considered a character part and cause misclassification. Second,
when building the lattice the order of the segments is determined before the con-
struction. In cases where broken characters overlap (in relation to x axis) finding
the correct order is not trivial. Wrong order of parts prevents the joining of the
correct segments. Our work solves such problems with an innovative approach.

2.5 Strings search

Traditional searching in a text image is usually performed on the OCR-ed text
using standard text retrieval techniques. However, recognition and segmentation
errors in OCR limit the accuracy of a search. Improved performance can be
obtained by searching for semi-equivalent queries or to perform post-processing
to OCR-ed text such as error correction.

The OCR accuracy of historical documents and manuscript is in many cases
too low, so alternate approaches of keyword spotting are explored. Such ap-
proaches use features of word images (e.g. shape coding [31]) to detect the query
or other global operators. These approaches are too slow for on-line search in
large collections.

An intermediate approach is to search in a hypotheses text of OCR as the
candidate lattice. [32] retrieves documents using multiple candidate of characters
and when there are uncertain characters a shape-feature is also computed. The
shape-feature describes the outline of the character shape. [33] proposes a lattice-
based method for keyword spotting in on-line Chinese handwriting. This method
stores the N-best strings recognition results in a database and then a query is
searched in the N-best strings. [31] proposes a method for keyword spotting
in off-line Chinese handwritten documents using a lattice generated by over-
segmentation. In word retrieval, the query word is matched with sequences of
candidate patterns in the lattice and a score is determined by word similarity.

[33] proposes a fast method for keyword spotting. However, the method does
not utilize all the information in the lattice. On the other hand, [34] does utilize
all the information in the lattice, but this results in a slower method. In this
thesis we propose a fast method that search in all the candidate letters.



2.6 The Hebrew language

Hebrew is written from right to left using 27 alphabet letters with two main
scripts: square and cursive. The square script has been in use for over two
thousand years without significant change in the form while the cursive script
evolved constantly. Also, cursive letters tend to be circular and flexible in form
and sometimes are markedly different from their square equivalents. Our work
focuses on the square script.

In the square script most letters are written by two connected strokes (e.g. ¥),
or by one stroke (e.g. 1), besides the letters 1 and p that are formed by discon-
nected strokes. However, in practice there are more letters that are disconnected
(e.g. N, 12 and in Figures 1,17). Another property is that some letters are
contained in other letters (e.g. * C 9 C 2, n C n). An additional property
is that there are no vowels (e.g. in English: A E,I,O,U), and instead there are
diacritical signs (called Niqqud, e.g. 07w 7n°271 ), which are written above, below,
or inside letters.

Several papers were published about Hebrew document analysis in recent
years but only [35] deals with letter recognition. [35] presents a method to search
for Hebrew letters in historical documents based on a dynamic time warping
algorithm. The features are based on profiles of small windows and the slope of
a contour.

Additional work was published over 20 years ago. These works made under
many technical and computational limitations and therefore their abilities are
limited.

[36] presents a system that helps analyze Hebrew square script in manuscripts
and includes a letter recognition mechanism based on a series of writing rules
that were manually adjusted. The presented system is unfinished and requires
human involvement in several stages.

[37] presents an algorithm in the syntactic approach for recognition of cursive
one-stroke Hebrew letters. That is, letters are represented by structures such as
lines, arcs and loops. The algorithm relies on the topological structure of the
specific script and cannot be adapted to styles with unclear structure.

[38] deals with recognition of hand-printed Hebrew characters. The recog-
nition has several stages based on skeleton, end-points, structural analysis and
features extracted in the Hough transform space. This work also relies on a



specific script and is highly dependent on the skeleton that is very sensitive to
noise.

Commercial OCR software for Hebrew exists from 90s and is commonly used.
In recent years there is open-source OCR software. These are appropriate only
for printed documents and do not work on degraded manuscripts.

In this thesis we present an OCR system designed for historical Hebrew
manuscripts.



3 Document preprocessing

The preprocessing stage is to prepare the manuscripts’ images for the OCR sys-
tem. The difficulties in this stage stem from the fact that the manuscripts found
in the Cairo Genizah demonstrate a wide variety of script types, letter sizes, ma-
terials (vellum, paper...), etc. Moreover, the manuscripts are found in various
degrees of degradation and quality. These variations are seen in the manuscripts’
images, which, in addition, are taken from different angles. Our preprocessing
consists of several steps which are shown in Figure 2 and are described in this

High-resolution
manuscript

v

| Image binarization and enhancement |

section.

N
‘ Line skew detection and correction I

’ Parameter estimation ‘

v 5

‘ Over-segmentation ‘

l

| Line segmentation |
I

v

Text-lines images

Figure 2: Document preprocessing steps

3.1 General preprocessing

The first step is to convert a manuscript image to a binary image. To enhance
the binarization, morphological operations are performed.

The second step is to horizontally align the image. This is done by finding
the angle of the text lines in the image. Finding this angle is done by analysing
the Hough Transform of the image, and then rotating it so that the text lines
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are horizontal. This step can also be repeated at the end of the preprocessing for
each line separately to ensure that all the lines are be horizontal.

The next step is to compute parameters such as average line height, char-
acteristic letter width, and stroke thickness. These parameters are used by the
OCR system.

The next step of the preprocessing is to over-segment the image in order to
deal with touching letters. This step is explained in detail in the next section.
Finally, the lines are extracted and sent separately to the OCR system, which
handles one line at a time.

3.2 Creating over-segmentation

In the over-segmentation step, the input is the connected components (CCs) of
the binary image. A potential problem that arises in recognizing a text line, is
that touching letters may be recognized as a single segment, thus, we need to
separate touching letters. Our solution is to break the CCs of touching letters, so
that each segment belongs to a single letter. However, a segmentation with too
many small segments will be unusable due to computational difficulties.

The first step towards creating an over-segmentation is to detect the CCs that
contain more than one letter. A possible approach is to use a letter classifier to
recognize “suspect” CCs, relying on the intuition that a letter classifier will not
successfully classify CCs that contains more than one letter. Thus, CCs that were
not successfully classified are reasonable suspects and require over-segmentation.
Another approach is to select the large CCs as suspects. As we are dealing with
Hebrew manuscripts, we preferred this approach. This is because in Hebrew,
there are several pairs of letters that when touching, are very similar to a single
letter (e.g. 1 ~ n, as in Figure 3a).

@ ek xpo[

Large CCs Small CCs

Figure 3: Examples of large and small connected components. (a) is example of a
letter that might be two touching letters.

The next step, after selecting suspect CCs, is to break them into parts. This is
done by a procedure that takes a binary or gray-scale image of each suspect CC,
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and builds an energy-map for it. In an energy-map, the background is ‘0’, and the
foreground pixels value are determined by the pixels’ intensity. The energy-map
is for the bounding box of the CC image.

The procedure splits the CC with top-down cuts. A cut is an 8-connected
path of pixels, running from top to bottom, containing exactly one pixel in each
row (see Figure 4). Usually, the letters that compose a suspect CC are from the
same line, so these cuts are appropriate. In case of a CC that crosses between
lines a cut needs to be made from the left of the image to the right. In these
cases we use the transposed image. The aim of the cuts is to over-segment a CC
and thus to split the touching letters.

Figure 4: Example of a vertical cut.

The minimum cut, which minimizes the weight of the path on the energy-
map, splits touching letters that have a small touching region with each other, i.e
when the thickness of the touching region is less than the stroke’s thickness. The
procedure finds the minimum cut, then increases the energy around the path,
in order to prevent future cuts from being too close to the current one. The
procedure repeats finding additional minimal cuts in the updated energy-map.
Finally, cuts that create very small segments are rejected. An example of this
process is shown in Figure 5.

ra Bvs: Blva ¢
YR YR

Figure 5: Demonstration of the over-segmentation process on a CC. (a) The CC image
(in gray) with the cuts (in black). (b) The energy-map at each iteration. (c) The result:
each segment a different color

The horizontal margins of the energy-map tend to have low energy. Therefore,
we add weights to the sides of the energy map (see Figure 5b) so that the cuts
are not made close to the horizontal margins of the CC.
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The proposed procedure is suitable for “easy” cases of touching letters, that
is, letters with a small touching region. We used heuristics based on distance
transform of a binary image for the initialization of the energy-map in order to
encourage the cuts to pass through noise. Other common cases of touching letters,
such as continuous strokes that are typical of cursive style, can be handled by
initializing the energy-map using various heuristics. Such heuristics can be based
on junctions in the skeleton or other skeleton and contour analysis.

13



4 Reading-graph model

The reading graph is based on an over-segmented text line, as explained in Sec-
tion 3.2. We compute candidate letters from the segments. Every candidate is
composed from a set of proximate segments (a set may be a singleton). Every
candidate is sent to a letter classifier, which returns the probability distribution
of the labels for this candidate letter. We define a join to be a set of segments
with a high probability label. Joins are stored in a reading graph, as depicted in
Figure 6. The reading graph captures several alternative readings of the line and
the plausible readings are computed from this graph.

(a) e
i
@)
4U
:
FI o

(b)  —3e-d-¥

Figure 6: (a) The segments are in different colors: In this simple example most letters
are composed of one segment; (b) The reading graph: The vertices are the joins (CCs
of different colors) with their Hebrew letter label (black).

The reading graph is a novel data structure with similarities to the candidate
lattice [28]. However, the joins of a reading graph do not necessarily include all
the segments. Every vertex in the graph represents a join, proximate segment
set, with a high probability letter label. Every edge in the graph connects a pair
of neighboring letters. Several joins can share the same segment (e.g. Figure 7b).
In addition, a segment can be part of more than one join with different labels
(e.g. Figure 7a).

Accordingly, every path in the reading graph is a possible reading of the text
line. We now proceed to describe the construction of the reading graph and how
to extract a reading from it.
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Figure 7: (a) Ambiguous shapes; (b) Joins can share same segment.

4.1 Reading-graph construction

The reading graph construction is based on join recognition in an over-segmented
text line. Join recognition is performed around a given position within a bounding
box, as demonstrated in Figure 8 and explained later.

\@13% )

| Join recognition|

1
joins: 1) ) ‘) 11)
labels: n b b w
scores: 0.3 0.4 0.7 0.8

Figure 8: Join recognition in a window.

The construction starts from the beginning of the line (in Hebrew - from
the right). We find possible joins for the first letter and store the joins in a
reading graph. For every stored join, we continue the construction separately
by recognizing the possible joins for any following letter using the remaining
segments. Figure 9 demonstrates the construction process. In this figure, the two
first letters have one join for each: <& and * . While the third letter has four
joins. For each of the four joins, the construction process continues separately.

Intuitively, the algorithm scans the line from right to left. At each step, the
algorithm examines the current bounding box and recognizes possible joins in
this box. Every join is then added as a vertex to the graph. The algorithm is
called again on the rest of the line (left of the join). Edges are added to the
graph such that each vertex is connected to all the vertices that correspond to
joins that were recognized immediately to its left. Adding edges is done during

15



\ /.~
1999

Figure 9: Example of an intermediate step of the reading-graph construction.

() YMDhIWN

Subsets examples:
AAJAIA S [ALAY AL
X X
(b) (c) (d)
Figure 10: (a) Over-segmented text line with window for join recognition. (b) Re-

jected - segments are far from each other. (c) Rejected - size or location. (d) Passed
the first step.

the algorithm’s backtracking.

An example of a simple reading graph was shown previously in Figure 6, a
more complex example is shown later in Figure 14.

4.1.1 Join recognition

Join recognition in an over-segmented text line is done within a bounding box and
starting at a position (see Figure 10a). The window’s dimensions are determined
by a large letter based on the manuscript parameters. In order to find joins we
test sets of segments which are within or partly within the window.

Testing the subsets in the search is done in two steps due to the large number
of possible subsets. First, a fast and coarse operator tests if a subset may be a
letter. In our implementation, the fast operator first rejects every subset in which
the segments are very far from each other (see examples in Figure 10b). Then,
subsets with irregular dimensions or location are rejected (Figure 10c).
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The subsets which passed the fast operator are sent to a letter classifier. The
classifier returns probabilities of labels (Hebrew letters). Every subset and label
with a relatively high probability is a potential join. In case of ambiguous shapes
(e.g. 1, 1), different potential joins can be the same subset but with different
labels.

Feature extraction

The letter-classification procedure is based on features extraction. We experi-
mented with several features based on projections, profile, chain-code, SIFT, and
more. We also developed a variant of the recursive-subdivisions feature intro-
duced in [13]. Our recursive-subdivisions feature performed significantly better
than all the other features we tried, so we chose to use only this feature.

The method takes a binary or gray-scale image of the potential join and repre-
sents it with a fixed length vector. The vector holds the coordinates of recursive
subdivisions which are computed by the following function. The function gets an
image and computes the x-coordinate of the center of mass (first order moment).
Then, the function subdivides the image into two images by the x-coordinate
and calls itself (recursively) on the transpose of each of the two sub-images. The
coordinate values are calculated relative to the complete image (bounding box).
These coordinates are the output vector which is of length 2¢ — 1 for a recursive
depth d.

~-|

Original image: -; I

70 70 6070 102
~y =
“‘ mso mso
‘ 70 70
il
43 92
d=1 d=2 d=3

Figure 11: Demonstration of the subdivision of an image in size 122x123 .

Observe that the vector holds twice as many subdivisions along one axis than
the other (indeed, for every subdivision along the x axis, we divide twice along
the y axis). As a result, the representation in one direction is more granular than
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the other. In order to balance the representation the function is also computed
on the transposed image and the two resulting vectors are concatenated.

In order for the feature to be invariant to the size of the image it is common
to resize the image to a fixed size. Resizing reduces image quality and therefore
may impair the representation. An advantage of this method is the ability to
normalize the vector rather than resize the original image.

In our implementation, the images consists of potential joins and the recur-
sive depth is 8. We normalize the vector with the typical letter height of the
manuscript as opposed to the common method that uses image height. Our nor-
malization allows us to distinguish between letters that are very similar up to
their height. This is important in Hebrew, due to letters such as e.g. 1,7 or 1,7
(see Figure 12).

NIy

Figure 12: The height and the width of the letters distinguish between them.

Classification

For the classification of the feature vectors of potential join, we used multi-class
SVM (One-against-One LIBSVM [39]), with a radial basis function as the ker-
nel. A grid search was performed in order to obtain the optimal values for the
variance parameter of the RBF kernel and for the cost parameter of SVM us-
ing cross-validation on a training set of letters. Most of the example letters in
the training set where extracted from historical manuscripts. The other example
letters are from digital fonts ' whose design was influenced by Hebrew histor-
ical documents. The images were represented using the recursive subdivision
described in a previous section.

4.1.2 Updating the reading graph

After construction of the reading graph, weights are added to the graph in order
to evaluate reading possibilities. Recall that the vertices are joins (corresponding

1Such as: Narkisim, Hadassah, David, Koren, FrankRuehl, and more. For more information
see [40].
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to letters) and that the edges represent neighboring letters. The joins are chosen
based on their high probability, so we use the join probability as the vertex
probability.

Edge weights are initialized according to probabilities bi-gram (pairs of letters
probability) that were calculated from old Jewish texts?. In addition, some edges
weights are reduced, to handle segments that are suspected of being noisy, as
explained in the following paragraph.

Non-letter segments are common in historical manuscripts, especially in He-
brew scripts, due to Nigqud (see Section 2.6). The preprocessing step attempts
to clean the noise, but it is not always possible to clean it all. Furthermore, small
segments can be a result of over-segmentation, so a small segment may either be
noise or part of a letter. A join-recognition mechanism is supposed to handle the
problem of small segments by choosing joins that are similar to letters. Unfor-
tunately, when a join of segments is contained in another join (e.g. Figure 7b:
) C ¥ ), weinsert to the reading graph joins that are not necessarily correct,
but have a high probability.

A possible solution is to penalize a join that is contained in another join
(e.g. U ). The problem with this solution is that we might penalize a join for not
using a segment, while the unused segment is actually part of the following join.
Thus, a penalty should depend on whether there are unused segments in a pair of
consecutive joins. Accordingly, we penalize an edge and not a vertex. Figure 13
demonstrates the need for a penalty that depends on the pair of consecutive joins.
The blue dashed edges are penalized because of the unused segment.

Figure 13: The reading graph of the above text. The two blue dashed edges were
penalized because of the unused segment.

2Bible, Mishna and Talmud
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4.2 Reading-graph applications

The reading graph can be used in several useful applications. In this section we
describe three applications. (1) Finding the optimal reading in order to return
text. (2) Interactive checking and correcting of output text. (3) Efficient storage
and fast retrieval.

4.2.1 Finding the optimal reading

In this section we describe how to calculate the most plausible reading from a
reading graph. As explained earlier, a path in the reading graph from the root
(the first letter) to a leaf (the last letter) corresponds to a sequence of letters. An
example of a path is shown as a blue line in Figure 14. In this graph, the vertices’
weights describe the accuracy of the labels, and the edges’ weights describe the
plausibility that two neighboring letters are consecutive.

(a) MY awn

(c) e TV .

Figure 14: The reading graph of (a). The blue line is the optimal path. (c) the
reading result.

Intuitively, the most plausible reading is the path that maximizes the sum
of the weights along it. This, however, is generally incorrect as it creates a bias
toward longer paths. That is, preferring to split letters as much as possible. A
correction for this is to normalize the total weight by the length of the path.
Thus, we search for a path that maximizes the average weight along it. This is
formulated as the following optimization problem.

{ZeeP tlvliight(e) } (1)

path® = arg max
prePaths
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To solve this optimization problem, we observe that the expression can be equiv-
alently formulated as follows.

e {Zeep weight(e) } _ 2)

pePaths | P|

Seep weight(e) }} (3)

max { max {
k{ pePaths of length & k

A dynamic programming algorithm can solve this optimization problem in O(|E|?),
where |F| is the number of edges.

4.2.2 Interactive checking and correcting of output text

In some cases, we can trust OCR systems to output text that is “close enough”
to documents, and such results are good enough. In many cases, however, an
accurate transcription is very important. An accurate transcription can be ob-
tained manually, but this may take a long time. Another option is to manually
correct OCR-ed text with respect to the original manuscript. However, this also
takes a long time. Other methods take problematic words and ask humans to
recognize them (e.g over the internet in the form of a game or reCAPTCHA [11])
thus filling the gaps in the OCR-ed text.

Most of the Cairo-Genizah manuscripts can be read correctly only in context
and only by few people. We developed an interactive tool to obtain accurate
transcriptions that is aimed at the Genizah manuscripts. The tool uses the result
of the optimal path as an initial transcription and allows an expert to easily
change the path in the reading graph, interactively. The goal is to direct the
expert and free him from a tedious search of errors. Figure 15 presents a screen-
shot of the tool.

The basic idea is to show an expert the text-line image and the transcription
obtained from the optimal path of the reading graph. The transcription is re-
vealed step by step, depending on the expert’s action. When there is a piece of
text with only one path in the reading graph, we place all letters of the piece
exactly below its sources. If there is a mistake the expert can to fix it with a
very simple interface. In other cases, where the text is ambiguous, the reading
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graph captures several alternative readings. Then, we want to validate carefully
the correctness of the letters along. Therefore, when there is a vertex in a reading
graph with several sons with high scores, we present the alternatives and let the
expert choose between them with a very simple interface. When an alternative is
chosen, the rest of the path is computed again with respect to the new selection

0\

| ¢ \
fr o9 ooy
kD22 MN1o?n

Figure 15: Screen-shot of the interactive tool

The interactive tool for checking and correction of a transcription of a manuscript
was tested by us. We tried either the manual way (typing the text manually) or
manually corrected OCR-ed output text with respect to the original manuscript.
When the OCR-ed text contains few errors, it was very hard to find the errors
and to correct them and we found that our interactive tool is better. In case
there are a lot of errors, it is not clear which is better, and it depends upon the
user.

4.2.3 Efficient storage and fast retrieval

In this section we present a method for fast retrieval of text line of documents,
according to a user query, from a large collection of documents. The documents
are represented off-line as reading graphs and the reading graphs are stored in an
index repository as described below. The search for a user query is performed in
the index repository, which contains information about alternative readings. This
way, results can be found in one of the alternative readings, even in a degraded
manuscript.

Reading-graphs storage

Searching for a user query in the reading graphs does not necessarily require all
the data contained in the graphs. The relevant details are the edges (neighboring-
letter pairs) and their position in a text line. In addition, the edges weights are
also useful for ranking the results.

An inverted list is an index data structure that holds a mapping from words
to locations in the text. We construct an array of inverted lists for all bi-grams
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(pairs of letters: e.g. aa, ab, ac, ... zz) in the language (in Hebrew there are 27 bi-
grams), as presented in Figure 16. The index repository holds the relevant details
of the reading graphs. Recall that a vertex in the reading graph corresponds to
a letter and an edge connects two vertices and thus represents two consecutive
letters (a bi-gram). For every edge in every reading graph we store the following
information in the corresponding inverted list: the ID of the text line in which
the edge appears, the position in the line, and the score of the edge. The data is
stored sorted by the ID of the text line and secondly by the position in the text

line.
XX | — 3,6,7,22 34,97, ---
Ra | — 2,12, 17, 32, 34, ...
Xy | — 1,99 55, 34, 87, ---

— 6, 7,16, 38,74, 127, ---

Figure 16: An array of inverted lists.

Space complexity analysis: The size of all the inverted lists is large and
depends on the number of documents and on the ambiguities in segmentation and
recognition in the documents. On average there are 15 text lines per document
in our documents and there are on average about 50 edges in a reading graph.
For each edge we store the ID, position and score. In our naive implementation,
storing this data for each edge takes 10 bytes. Therefore, the total memory used
for storing one document is: 15 -50 - 10 = 7,500 Bytes. storing a collection of
10,000 documents takes about 75 Megabytes. This can be easily kept in main
memory for quick access.

The retrieval

The retrieval of a user query is based on the inverted lists. Given a query string,
we decompose it to bi-grams and intersect the inverted lists of all the bi-grams
and get the text lines that contain the query. The proposed method is fast and
compatible with real-time retrieval in large collections.

Intersecting the lists is done with respect to the IDs and the positions, such
that each two consecutive bi-grams of the same ID need to have an overlapping
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letter in the text line. This way, we force all the bi-grams to be consecutive, as
are the bi-grams in the user query.

The intersection algorithm is applied to pairs of inverted lists that have an
overlapping letter. For efficiency reasons, the order of the lists that we intersect is
determined by taking the shortest list each time. The intersection of two inverted
lists is done using two pointers to the elements of the two lists. At every step, the
pointer that points to the element with the lower ID is incremented. When the
two pointers point to the same ID, the positions of the elements are examined
and if there is an overlap between the two bi-grams in the text line, the element
is added to the intersection. The time complexity of taking the intersection is
O(n), where n is the sum of the lengths of the inverted lists that we intersect.

A wildcard character (‘+’) can be used to represent any sequence of letters, and
is useful for querying. To allow wildcards in the middle of a string, we perform
two queries: the prefix (the string preceeding the wildcard) and the suffix (the
string following the wildcard). Then, we intersect the results in order to find the
cases where the prefix appears before the suffix.

Improvements

The results of a query are ranked by average edge score taken over the edges
that are stored together with the same ID in the inverted lists. This rank is the
score of the string’s path in the reading graph and describes the quality of the
string that is found. In rare cases, the query string does not exist exactly in the
text line. Such cases may occur when there are two overlapping bi-grams whose
corresponding edges in the reading graph do not share a vertex. Since we do not
store the vertices of the reading-graphs we do not detect such cases. However, as
we mentioned, these cases are rare (at least in our manuscripts). It is possible to
load the reading graph and check that the returned string induces a connected
path in the graph, however, this slows down the query search.

Finally, the results are presented to the user in decreasing order of rank.
However, hundreds of possible results for a query are too much and usually a user
is interested only in the few top results. A possible improvement is to retrieve
only the top results and retrieve additional results upon request from the user.
Implementing this can be done by dividing inverted lists to chunks according to
score ranges. Then, we can start the search with the highest scoring chunks and
continue upon request from the user to the other chunks.
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Sorted lists can be stored in a B+ tree instead a simple list. A B+ tree
represents sorted data in a way that allows efficient intersection with a small
memory overhead for pointers. Another basic improvement is to use in addition
inverted lists which correspond to popular words. In such inverted lists we can
store the result of popular searches and avoid computing of them every time.
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5 Experimental results

We evaluated the performance of the proposed methods in several ways. The
feature extraction was tested on a character database as explained in section 5.1.
The accuracy (in edit distance) of the optimal path in the reading graph was
tested on historical manuscripts that were written in square style as explained
in section 5.2. The string retrieval was tested on the same manuscripts as the
reading graph as well as on synthetic documents as described in section 5.3.

5.1 Feature extraction

The evaluation of the recursive-subdivisions feature was done by measuring the
classification error of a multi-class SVM. For our experiments we used two char-
acter databases: MNIST Database, and a Hebrew-letters database we collected.

The MNIST Database consists of 70,000 isolated, handwritten digits. All
the digit images are normalized to a 28x28 matrix and are represented by the
recursive-subdivisions feature. The MNIST database is divided into a training
set of 60,000 and a test set of 10,000 digits. We trained an SVM classifier with
an RBF kernel on the training set and we got on an error of 1.57% on the test
set. It is worth mentioning that in our system, we take into account not only the
highest ranking label, but the second and third as well (when constructing the
reading graph). In these case, the error decreases to 0.4% and 0.05% respectively.

The Hebrew-letters database consists of Hebrew fonts and letters extracted
manually from historical manuscripts. In order to use the feature extraction
optimally we examined several recursive depths. In addition, since there are
several similar Hebrew letters up to scale (see Figure 12), we examined different
normalization methods.

The original method of the feature extraction includes non-uniform represen-
tation as explained earlier in Section 4.1.1. In order to overcome the non-uniform
representation we proposed to repeat the computation with the transposed image.
We examined the utility by comparison of vectors with the same length.

The normalization methods we examined are: (1) Normalizing to a fixed-size
square; (2) Normalizing to a fixed-size rectangle by image height (keep the aspect
ratio); (3) The same as 2, but using typical height of the letters; (4) Concatenation
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of 2 and 3 from the previous depth.

Table 1 summarizes the performance of the feature extraction in the different
settings. The normalization method using typical height achieved a lower error
and the method that combined the two basic methods was the best. Most of the
comparisons showed improvement in the classification error when we also used a
transposed image.

Normalization method: 1x1 Letter hight | Line height | Combination
Including transpose? X v X v X v X v
25 3.07 3341292 296 | 224 246 | 2.73 4.47
26 2.88 2.62|3.00 250|209 1.82|201 201
27 277 269|258 228 | 190 1.97|2.05 1.67
28 3.07 265|296 262|216 1.86| 197 1.71

Vector length:

Table 1: The performance of feature extraction on a Hebrew-letters database. We
tested four nomalization methods, on varying vector lengths. Each test was done with
and without using the transposed image.
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5.2 Handwriting recognition

We tried the system on various degraded manuscripts: 104 pages of a hand-
written book and an additional 202 different manuscripts. Figure 17 presents
examples of word images from the manuscripts. All the manuscripts were written
in square style and are from the Cario Genizah (www.genizah.org).

The manuscripts of the hand-written book had of many diacritical signs
(e.g. oivw 7n°21 ), degraded letters and noise. The other manuscripts have the
same problems and in addition they were written by many writers and thus
include a wide variety of the square style and letter sizes. Table 2 shows the
distribution of the letters in several manuscripts we tested.

examples | page 1 | page 2 | page 3
complete letters AaND 66% 69% 37%
legitimate disconnected letters (e.g. j) PT\ ) 4% ™% 6%
disconnected letters v N)/’ 3% 8% 20%
touching letters Y| % 8% 24%
degraded letters X371 12% 7% 6%
unrecognized 2ir 6% 1% ™%
Total normal letters 70% 76% 43%
Total abnormal letters 30% 24% 57%

Table 2: Distribution of letter types in a degraded manuscripts.

The overall recognition of our OCR system is calculated using the edit distance
(also known as Levenshtein distance). The edit distance between two strings is
given by the minimum number of operations needed to transform one string
into the other, where an operation is an insertion, deletion, or substitution of
a single character. We used it to measure the similarity between the OCR-ed
text produced by our method and the ground truth text. The overall recognition
rate is defined by equation 4. Table 3 presents the recognition rates for the three
pages that are mentioned above.

Edit distance
Number of letters in page

(4)

Recognition rate = 1 —
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page 1 | page 2 | page 3

Working time (sec) 93 81 181
Letters number 344 359 364
Edit distance 29 21 44

Recognition rates | 91.6% | 94.2% | 88.0%

Table 3: Recognition rate of OCR-ed text produced by the optimal path.

5.3 String retrieval

The string retrieval algorithm was tested on two collections, each in a different
way. In both collections, the documents were represented by reading graphs that
were stored in inverted lists, as described in Section 4.2.3.

The first collection includes all the manuscripts that were mentioned in the
previous section (104 + 202 pages). Since we do not have a ground-truth for these
manuscripts, we manually checked the result as follows. We arbitrarily chose
strings (with 4-9 letters, see examples in Figures 17) and denoted their position.
Then, we searched for the strings and checked if the chosen positions were in the
results. Figure 17 presents images that we searched for their string and Table 4
presents the results.

v Er ' — -
N Whyn | wun | owen |
a 1

oYY | v n-j_;? V‘f‘&:‘
IR "‘ "13;1?
i

Figure 17: Word examples from the Cairo Genizah. (a) Successful examples of search.
(b) Unsuccessful examples of search.

(b)

29



Length | # found | # total | Found rate | avr time (sec)
4 31 36 86.11% 0.08
5 26 31 83.87% 0.13
6 25 33 75.76% 0.15
7-9 23 31 74.19% 0.15
| Total: | 105 131 | 80.15% | 0.13

Table 4: Retrieval results from a collection of degraded manuscripts.

The second collection consists of synthetic text images of a well-known book.
In order to complicate the reading graph we degraded the image by adding noise
that connects and breaks letters, such that there is a large number of alternative
readings.

In order to evaluate the recall and the precision of our method, we randomly
chose 89 words with 3-7 letters. Then, we performed a search for these words.
The results and computation-time are presented in Table 5 and are measured by
recall, precision and F-Measure, defined as follows:

# correct detected words
Recall = 5
eca # truth words (5)

.. # correct detected words
Precision = (6)
# detected words

2. ision - 11
F-Moasure — prfzc‘lslon reca (7)
precision + recall

| Words length | Recall | Precision | F-Measure | Time (sec) |

3 1.00 0.71 0.81 0.0166
4 0.99 0.84 0.90 0.0437
5 0.97 0.97 0.96 0.0664
6 0.96 1.00 0.98 0.0759
7 0.96 1.00 0.98 0.0825

Table 5: Retrieval result in terms of recall, precision and f-measure.
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6 Summary

Throughout this thesis we presented our system for handwriting recognition and
fast retrieval of Hebrew historical manuscripts. Our system efficiently finds a
plausible reading of the text image, offers alternative readings (via an interac-
tive tool), and allows searching for strings in every alternative reading of every
manuscript in a large collection.

Degraded manuscripts contain many abnormal letters (degraded, disconnected,
and touching), as well as variance in handwriting. We developed a method for
creating over-segmentation in touching characters, which allows us to deal with
such abnormalities. See Section 3.2 for details.

To decide which segments compose the letters in an over-segmentation of the
image, we could use the candidate lattice (presented in Section 2.4). However,
there are problems in using this structure (see section 2.4). Therefore, we propose
a novel structure - the reading graph (explained in Section 4), which is more
flexible as and enables us to overcome the problems we have with the candidate
lattice.

The reading-graph construction is done by a recursive algorithm that rec-
ognizes joins (proximity segments sets, which are similar to letters). The join
recognition is done by a method for feature extraction, which we improved upon
(see Section 1). The joins that are found, and their respective scores, are stored
in a reading graph together with the relations between them (see Section 4). In
addition, the probabilities of bi-grams and information about unused segments
are incorporated in the reading graph. Incorporating all this information, the
reading graph captures alternative readings of the text image.

We developed three applications for our reading graph. (1) Finding the op-
timal reading in order to return plausible text. (2) Interactive checking and
correcting of output text. (3) Efficient storage and fast retrieval of manuscripts.
Experimental results on the Cairo Genizah show that our system successfully
reads degraded manuscripts containing many abnormal letters, as well as retrieves
manuscripts even when the image of the query string is degraded.
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A Algorithm for Reading-graph construction

This appendix presents a recursive algorithm for the construction of a reading
graph that presented in Section 4.

Algorithm 1 Reading graph construction
(join is a proximity segments set, which is similar to a letter label)

1: function findNextJoins (curJoin, graph G)
2: if curJoin is last-letter of the line then

3 return

4:  end if

joins = recognized joins following curJoin // Section 4.1.1
for all j € joins do
add vertex j to G
nextJoins = findNextJoins (j, G) // Recursive call
add edges (j, nextJoins) to G
10: end for
11:  return joins
12: end

The reading-graph is constructed using a function that recursively traverses
an over-segmented text line. This function is presented in Algorithm 1. The
function has two inputs - a join curJoin, and a reading graph G. The input
variable curJoin is a join added to the graph. Initially, curJoin is set to null,
which represents the beginning of the line and G is an empty graph.

The function recognizes the joins following curJoin (line 5) as was shown in
Figure 8 and as we explain shortly. As a result, joins contains all the possibilities
for the consequent joins after cur.Join.

For every possible join 7, line 7 adds a vertex, representing the join, to the
graph G. Line 8 recursively calls the function with a new current join j and the
updated G, and gets all the next joins. Line 9 adds edges from the vertex of join
j to all the consequent vertices. After the loop in Line 6 finishes, the function
return joins (line 11), which contains all the possibilities for the consequent joins
to be set in curJoin. The joins that are in joins are set to nextJoins (line 8),
for a previous recursive call. In case there are no consequent joins (line 2), the
current call stops. Finally, the construction finishes after all the recursive calls
are completed, and then GG contains the reading graph.
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In conclusion, the algorithm does three operations for every new join j. (1) It
recognizes the joins following j. (2) It adds all the recognized joins to the graph.
(3) Tt adds all the edges from any vertex j to the new vertices of the recognized
joins. Figure 18 demonstrates it.

Dummy vertex
(to start)

Previous vertex

The recursive Find next vertices
process (Letters)

Next vertex

_- ’g"a()‘(‘ Vertices
>\
£ - \)Q
C Readifﬁg > < Dummy
ra vertex
&P (to end)
Return graph

Figure 18: Flowchart of the reading-graph construction.
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B Compute path with maximum average

This appendix presents a dynamic programming algorithm for computing the
average maximum path in a directed acyclic graph (as the reading graph). This
is formulated as the following optimization problem.

jght
path* — arg max {Eeep weig (e)}
pePaths 1P|
Algorithm 2 Compute path with maximum average weight
Initialize:
do(S) =0

Vo eV \s:dy(v) =—c0

fort: =2 —>ndo
forallv=1—ndo
di(v) = maxy.(uver {di1(u) + w((u,v))}
fl(v) = arg maXy:(u,w)ek {dl—l(u) + w((u, U))}
end for
end for

t = arg maxy, {dk (lastyertex) }

k
path(t) = last_vertex

fori=t—2do

path(i — 1) = fi(path(i))
end for
return path
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