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Abstract 

Digitalization of historical and cultural documents can provide researchers with new 

options for conducting research on a variety of subjects. Although OCR systems are the 

common method for digitalization processes, they are sometimes not enough due to the 

poor performance of those systems on documents that are handwritten, have low contrast, 

include shifts in writing style, and have various other typical characteristics of 

manuscripts. For such documents, OCR needs to be post-processed to allow successful 

utilization of the data contained in the documents.  

This thesis proposes various methods for such post-processing, using techniques from the 

fields of natural language processing and statistical language modeling. Methods are 

proposed for language classification, document segmentation and text searching. These 

methods are designed to handle very noisy texts and are tuned to work on the Hebrew 

language. In this way, the methods can be of use in the project of digitalization of the 

Cairo Genizah – a collection of ancient and medieval Jewish works. Our methods have 

been evaluated on both real and artificially produced documents. 
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CHAPTER 1  

 

INTRODUCTION 

The Cairo Genizah is a combination of important scholarly works, community records 

and ledgers, business and marriage contracts, personal letters and more. Among these 

documents are original manuscripts in the hand of famous scholars and personalities of 

that era. The digitalization of those manuscripts can open various research possibilities 

for cultural and historical researchers. Nonetheless, this process poses challenges to the 

traditional digitalization processes of scanning and recognition of text by an OCR engine. 

The fact that the manuscripts are handwritten, when handwriting can vary in style and 

clearance, even the fraction of documents written in Hebrew script present a big 

challenge to OCR systems. Other properties of the documents, such as low quality of the 

manuscripts, various languages, incomplete pages and other challenges make it 

impossible for an OCR engine to produce results that can satisfy the lowest demand 

needed for any research. The common method for handling noisy texts is using some 

statistical, language oriented post-process on the result to increase accuracy.  

The post-processing of the text relies on properties of the language the text is written it. 

The tools present a scale up in the level of processing of the text, from geometric features 

of written figures to the linguistic meanings of those characters as building blocks for 

words. It is common, for example, to correct erroneous words by matching them to some 

known words in a known vocabulary or to measure the probability of some character 

combination in a language. Identification of the text language is a preliminarily for those 

methods, in case the language is not given and cannot be implied from the 

script/encoding of the characters. In the case of the Cairo Genizah, the texts appear in a 

variety of Hebrew-script languages such as Aramaic, Hebrew, Judeo-Arabic, Ladino and 
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more. The similarity between those languages also vary from languages similar in style 

like Hebrew and Aramaic, to language that share only script with the others, like Judeo-

Arabic. Moreover, many of the documents are mixtures of paragraphs in different 

languages, presenting further challenge for the application of a post-processing tool on 

them since a straight forward classification of language cannot be used.  

Even after successful identification of the language of every part of the text, the 

application of traditional correcting methods in not straight forward. Due to the low 

accuracy of the results produced by the OCR process, correction of text using single word 

lookup is not satisfying. On the other hand, a significant part of the Genizah documents 

are transcriptions of some known Jewish texts, which we can look in pre-prepared 

repositories. Therefore, an application of approximate string matching techniques for 

searching the noisy text in this repository can be useful for such post-processing.   

For the post-processing of OCR on Cairo Genizah documents we present a multi stage 

scheme 

1. Identification of the document language 

2. Segmenting the document to monolingual fragments in the case of a multi lingual 

document 

3. Searching the text in a corpus according to language recognized. 

1.1 The Cairo Genizah 

The Cairo Genizah is a collection of over 300,000 Jewish manuscripts found in the 

loft of the ancient Ben Ezra Synagogue in Fustat medieval Cairo, to the south-west of 

the modern city between the 11th and 19th centuries. The dark, sealed, room in the 

arid Egyptian climate contributed to the preservation of the documents, the earliest of 

which may go back to the eighth and ninth centuries. The Genizah texts are written in 

various languages especially Hebrew, Arabic and Aramaic mainly on vellum and 

paper, but also on papyrus and cloth. They represent the most important discovery of 



 11 

new material for every aspect of scientific Hebrew and Jewish studies in the middle 

ages. In addition to containing Jewish religious texts such as Biblical, Talmudic and 

later Rabbinic works (some in the original hands of the authors), the Genizah gives a 

detailed picture of the economic and cultural life of the North African and Eastern 

Mediterranean regions, especially during the 10th to 13th centuries. Its documents 

reveal a wealth of information about this previously little known period in Jewish 

history. Today, a large portion of the Genizah's documents are available at Cambridge 

University Library and at the Jewish Theological Seminary in New York. Smaller 

collections are spread out in university library collections across the globe, among 

them London, Oxford, Manchester, Paris, Geneva, Vienna, Budapest, St. Petersburg, 

New York, Philadelphia, Washington and Jerusalem. Some are housed in private 

collections. 

1.2. Corpora Collection 

The algorithms proposed further use statistical properties of the languages. A 

significant work was made for collecting statistics on those languages, which are not 

commonly used in nowadays, and digital copies of documents in those languages are not 

widespread. The corpora collected for Hebrew contains the "Torah" – the Pentateuch and 

the Mishnah - the first major written redaction of the Jewish oral traditions called the 

"Oral Torah" which is also the first major work of Rabbinic Judaism. For Aramaic, the 

corpus contains the Jerusalem Talmud - a collection of rabbinic notes on the Mishnah 

which was compiled in the Land of Israel during the 4th-5th century. The Talmud, as a 

commentary on the Mishnah, contains significant number of Hebrew quotes, so it is not 

pure Aramaic. Another Aramaic book is "Targum Onkelos", an official Aramaic 

translation of the Torah. For Judeo-Arabic, later work was collected such as "More 
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Nevuchim" (The guide for the perplexed) by Maimonides, the "Kuzari" by Rabi Yehuda 

Halevy, and "Hamaspik Ovdey Hashem" by Maimonides son.  

Other collection were obtained for further experiments, among which are the  

"Hazohar" in Aramaic, which is the foundational work in the literature of Jewish mystical 

thought known as Kabbalah, Hebrew "Shulhan Aruch" which is the most authoritative 

legal code of Judaism and other Jewish religious work. A full list of the corpus is listed in 

appendix 1. 

For the use of the collection as a statistical reference it was processed to be 

cleaned of irrelevant characters, unneeded lines and various punctuation. It was then 

tokenized and several n-gram statistics were collected. 

1.3 Related work 

Much work have been conducted in the field of OCR postprocessing, most of them 

using statistical approaches over N-grams or vocabularies. The methods over 

vocabularies contain approximate string matching techniques for searching lists of all 

known words of a language such as proposed by Chen et al.(2010). Statistical 

methods use probabilities over character combinations for correcting the OCR errors, 

combined with confusion matrices (Kukish, 1992). Kolak and Resnik (2005) advice 

the use of statistic methods in the case of low density languages, where massive 

document sets for producing vocabulary are not available. Methods for using words 

n-gram for such process were also introduced. However, little work has been done on 

using those methods on multilingual documents. Approximate string matching 

methods of strings against corpora were surveyed by Navarro (2001) and include 

dynamic programming algorithms, filtering techniques and approaches using final 

automata. 
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Work on language classification has been widely learned (Hughes et al, 2006), mostly 

as a classification problem. Two approaches dominate the works in the area, word 

based and character based. Word based approaches represent the text as vector of 

words and use supervised classification techniques for the identification of language. 

The character based approaches do this by comparing n-gram probability distributions 

over each language and the text (Hakkinen and Tian 2001). 

The processing of multilingual documents was addressed by Giguet (1996), which 

addressed the problem using grammatical words and end of word characters. The 

processing was sentence wise, and actually the segmentation process was not issued. 

Related work on segmentation of text, usually of semantic nature, was pioneered by 

Hearst (1993) and used sliding window techniques. Following work utilized lexical 

chains techniques, clustering, dynamic programming and other techniques (Choi, 

2000).  

1.4 Structure  

The rest of the thesis is structured as follows: Chapter 2 describes the method for 

language classification of documents. Chapter 3 describes the extension of the 

method for segmenting multi-lingual documents to monolingual fragments. Chapter 

4, presents the algorithm for searching noisy texts in a corpus. Each of those chapters 

includes a short background, description of the algorithm and experiments made for 

testing. Chapter 5 contains conclusions and discusses further possible research 

directions.
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CHAPTER 2 

 

LANGUAGE CLASSIFICATION 

 
An important step in the digitalization process of manuscripts is language identification. 

Apart from using the language to efficiently catalogue the manuscripts, recognizing the 

language is a crucial part for OCR processes. An OCR post-processing algorithm 

(described in further in this work) assumes knowledge of the language of the manuscript 

for choosing the appropriate corpus to scan. 

2.1 N-Gram approach 

An obvious fact is that different languages, even if containing the same character set, 

have different distribution of the letters appearances. Therefore, gathering statistics on the 

typical distribution of letters in each language may lead us to reveal the language of a 

manuscript by comparing its letter distribution to the distributions we know. A simple 

distribution of the letters may not be enough, so a common technique in NLP is using n-

grams which mean computing the distributions of all possible combinations of n letters. 

Obviously, the number of possible combinations grows exponentially with n, so usually 

the value of n does not exceed 4. 

 

The classification can be described by the following procedure 

1. Collect N-Gram statistics on all possible languages 

2. Compute N-Gram distribution on the manuscript 

3. Compute the distance of the manuscript's distribution to each language using 

some distance function 

4. Classify the manuscript as the language with the minimal distance 
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The first task in computing the n-gram distributions is choosing the n. In our experiments 

we tried unigram, bigram and trigram. The characters we considered were all Hebrew 

alphabet letters, including “sofiot” (variants of letters that appear at the end of the words). 

The only additional character used was the space character (‘ ‘), under the assumption 

that different languages can have different word lengths (for languages with shorter 

words the space character will have higher appearance count) and that different languages 

tend to have different letters ending a word (and then bigrams or trigrams containing 

those letters followed by space will appear more). Specifically, when a human tries to 

identify Aramaic texts, he may do it by looking for words ending by Alef ('א'), a property 

strongly correlated with this language. The probability function for an n-gram i is given 

by  

 

It is easy to see that the denominator, which is the sum of all appearances of all n-grams 

in the text, is just the length of the text (minus n). The formula implies that an n-gram that 

was not spotted in the text has a zero probability, a fact that can be true for some n-grams 

(for example n-gram which contains a letter that appears only at the end of the word 

followed by a character which is not space), but is not generally correct. There are 

techniques that smooth the distribution function, giving unseen n-grams a probability 

larger than zero, but we chose not to address this problem by smoothing but by adapting 

the distance function to handle such distributions. 

The second missing detail in the algorithm is the distance function. Since the distribution 

function is discrete, we can actually represent it as a vector of probabilities, and transform 

the problem to vector distance problem. We tried the following three distance functions: 

• Cosine similarity – this function is basically the cosines of the angle between two 

vectors, measuring how similar are the directions of the two vectors. The value is 

computed using 
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The function is a similarity measure rather than a distance measure, therefore 

when classifying a manuscript, the language with the highest similarity value is 

taken (opposed to the minimal distance for other functions). It is also symmetric 

and normalized to values between zero and one. 

 

• KL Divergence [] - the Kullback–Leibler divergence, often referenced as 

information gain, is a measure between two distributions, originated from 

information theory. The function is defined as following 

 

 

Note that there are several problems using this measure for classification 

purposes. First, the function is not symmetric therefore we need to choose 

whether d1 is the language corpus distribution or the manuscript distribution. It is 

common to look at the KL divergence as a measure to how much a sample 

distribution d2 differs from the “true” distribution therefore we used (after some 

testing) d1 as the corpus distribution. Another challenge is the presence of zero 

probabilities. If    or    then  is undefined. We 

chose to skip all n-grams not present in one of the distributions, what can of 

course distort the distance (for example if the manuscript and language has no n-

gram in common the distance will be zero although it should be infinity) but 

simplifies the function to match our needs. 
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• Euclidean distance – really the straight forward approach for measuring 

distances between vectors.  

 

2.1.1 UNKNOWN CLASSIFICATION  
For shorter documents we can expect performance to be poor. To address this, we can 

allow the “Unknown” classification, using which we can reduce the error rate. To 

determine when the classification can be set to “Unknown” we need some certainty 

measure of the classification. We can then set some threshold and classifications with 

certainty above the threshold we be considered certain and below threshold will be 

considered uncertain or "unknown". This can be helpful in many cases, especially 

when the classification precision is of high importance. Using this method, 

"unknown" fragments can be further analyzed (maybe manually) and the classified 

fragments are only those of very high certainty.  

To get this certainty measure we can look at the cosine similarities of fragments to 

their closest language. We obviously expect them to grow as the fragment length 

grows.  For extracting the certainty measure we can use two methods: 

 

Absolute distance – If the distance of the fragment to the classified language is very 

high, we can be more certain of the classification. Here we assume that mistakenly 

classified fragments will have lower similarity than the correct ones as presented in 

Figure 1. We then use regression to learn a function of the threshold dependency on 

the length. We tried establishing linear logarithmic function of the form 

 where a, b, c and d are parameters to be 

determined by regression. 
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Figure 1:  The difference between the average cosine distance of correctly classified texts 
and mistakenly classified texts 

We can see in Figure 1 that the accurately classified texts are classified with much higher 

similarity then the mistaken ones so it looks possible to compute some threshold under 

which we can say the classification is not clear.  

Relative distance – Here we rely on the intuition that when a document is classified 

correctly, its cosine similarity to the right language is much higher than the similarity to 

other languages. We can define a variable offset which will stand for the difference 

between the cosine similarity of the fragment to the closest language and the document's 

average similarity to all considered languages. More formally,  

 

Figure 2 shows that offset indeed is significantly larger when the classification is correct, 

so we can use it as the certainty threshold as we can see that for wrongly classified 

documents the offset is always in the range of 0.04-0.05 

 Here we will not set the threshold as a function of the length, and use the variance of the 

similarity distances. For each document we can compute the standard deviation 

std(document) of the cosine distances from each language. We will say that the 

classification is certain if offset>a*std. 
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Figure 2: The average of the offset variable (the difference between the maximum 
similarities to the average similarity) of correctly and mistakenly classified 

documents.  

2.1.2 SMALL AND NOISY DOCUMENTS  
Classifying OCR processed manuscripts have several unique challenges, not 

encountered when handling traditional language classification of documents. One of 

these challenges is handling significant amount of noise characterizing OCR outputs. 

Another challenge is the frequency of extremely small texts, some less than 50 

characters long (maybe two sentences). The significance of small documents 

classification rises when handling the problem of multilingual document 

segmentation described further. The length of the documents and the noise rates can 

make some statistic measures less efficient due to distorted distributions or 

insignificance of statistics on small samples.  

Several methods (Kukich, 1992) have been proposed for error correction using N-

grams, using transition probabilities – the probabilities of a letter following another.  

Here, we are not interested in error correction, but in the adjustment of the classifying 

procedure to handle noisy texts.  For noise representation we introduce the "$" 

character which stands for an unrecognized character by the OCR. We do not discuss 

error recognition here and assume that errors are recognized and represented by the 

"$" sign. A conservative OCR system can only output characters which have high 
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probability of correctness and output the rest as "$", so all misidentification mistakes 

can be reduced to this notion. There is also no assumption that the word boundaries 

will not be misidentified, so a "$" sign can be produced instead of a space character.  

Several methods are proposed 

Ignoring unrecognized n-grams – here we do not account the n-gram containing the 

"$" character in the cosine similarity measures. This requires no change from the 

regular pattern since those n-grams do not appear in the language model anyway. 

Here we assume there is enough bigrams left in the text to successfully identify its 

language with the remaining n-grams. 

Remove unrecognized characters – we can also remove the "$" fragment from the 

text before starting any analysis. On one hand, it looks natural to ignore all noise, but 

on the other hand we lose the information that noise was indeed produced. Therefore 

 which may distort the n-gram distributions 'אב' will transform to 'א$ב'

Error correction –  Given unknown character we can try correcting it using trigrams. 

When observing the $ signed surrounded by a character l1 on its left and l2 on its 

right, we can look for the most common trigram in each language containing l1 in the 

beginning and l2 at the end.  It looks natural to do it and enhances the statistical 

power of the n-gram distribution. On the other hand it does not scale well for high 

noise rate since there is no solution for two or more consecutive "$" characters. 

Averaging n-gram probabilities – When encountering "$" we can use averaging to 

estimate the probability of the n-gram containing it. For instance the probability of the 

bigram '$א' will be the average probability of all bigrams starting with 'א' in a certain 

language. This can of course scale to higher n-grams and integrates the noisy 

information into the computation. 

Replacing the '$' – We can try to replace the '$' by some other character without 

relying on the language model. We do that by looking at the character before it, 

noting it as l, and searching the given text for another appearance of it. The character 

appearing after l in the closest appearance to the '$' character will be the one we will 

choose to replace it with. This is a rather heuristic and not statistic error correction, 
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relying that replacing an unknown bigram can be predicted using similar bigrams 

close to it in the text.  

Top n-grams – when looking at noisy text we can say that more weight should be 

given to the corpus statistics since it is error free. Moreover, since text is short we 

expect to see only a small portion of the n-grams in the text. Therefore we can look 

and compute distributions only on the n most common n-grams in the corpus, 

assuming that they must appear in the text regarding noise and length.   

Higher or lower n-gram space – So far we used bigram which showed superior 

performance. When error rate rises and text length drops, the more distinctive n-gram 

such as trigrams may produce higher success rate. On the opposite, unigrams need 

shorter text sample for robust statistics so are also reconsidered. 

 

2.2 Experiments and results 

2.2.1 TEST SETTINGS 

The success of language classification can heavily depend on the properties of the 

test set. For the task of classifying manuscripts, there are several properties to be 

considered: 

Text length – manuscripts can be of different lengths, from a small number of 

sentences up to a whole page that contains multiple paragraphs.  It is clear that the 

variance of the distributions of smaller texts is much higher, so the probability of a 

statistic model extracted from short text to differ from the language statistic model is 

higher. Therefore, we can expect lower accuracy rate on shorter texts.  For our 

experiments we tested various text lengths to measure the influence of this parameter.  
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OCR error rate  – Assuming that the classified text is a result of some noisy 

process, we expect that high rate of noise will reduce the classification success rate. This 

parameter was also tested and we present how we address highly erroneous documents. 

 

Language set – Even when languages share the same character set, they can still 

significantly differ from one another. For example Hebrew and Judeo-Arabic are 

completely different, with little chance that a Hebrew speaker will understand Judeo-

Arabic even a little. On the other hand, some languages can share the same character set 

due to common origins, which will resemble in the high similarity between them that can 

make the classification task more difficult. Such are Hebrew and Aramaic that have a lot 

of similar words or a word in one language that is some variant or descendant of a word 

of the other language. Needless to say that as the set of languages grows the classification 

task becomes more difficult. 

 

2.2.2 TEST RESULTS 

To test the distance function we begin by selecting 300 documents, 100 of each 

language and try to classify those using bigrams with each of the mentioned distance 

functions. For this purpose we use prepared texts with no errors. Each document is 300 

characters long. 

 
 

 

 

 

 

 

 

 Cosine KL Euclidian 

Overall 0.94 0.81 0.94 

Hebrew 0.93 0.78 0.94 

Aramaic 0.89 0.72 0.89 

Judeo-
Arabic 

1 0.94 1 
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   Table 1: Classification accuarcy of distance function 

From the results two facts arise clearly: The cosine and Euclidean functions have 

higher accuracy then KL and Judeo-Arabic language is much easier to spot then 

Hebrew and Aramaic.  

300 characters are about four sentences which is a pretty short text. For similar 

languages like Hebrew and Aramaic it may be too short to get a good classification. 

We also want to try out trigrams in order to gain better statistics. To test this, we 

classified texts of various lengths, using unigrams, bigrams and trigrams. We tried it 

only on Hebrew and Aramaic since we saw that Judeo-Arabic is distinguishable 

pretty easily. 

  

Figure 3: Classification accuracy of different n-grams 

 

From figure 3 we can see that generally bigrams are the best method on all lengths. 

For texts longer than 1000 characters the performance is perfect. On short texts 

trigrams have low performance which rises as the text size grows, but does not reach 

the bigram performance even on long texts. Perhaps on really long texts, the statistic 
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power of trigrams can be more significant but on page sized texts it is inferior. 

Unigram have poorer performance then bigrams even on the shortest texts. 

2.2.3 "U NKNOWN "  CLASSIFICATION TESTS  

By allowing classification to return an "unknown" result, we obviously reduce the 

error rate. On the other hand, since the "unknown" classification is not a correct 

classification, it also reduces the success rate. To establish a fair measure, we can score a 

successful classification as 1, an unknown classification by 0 and wrong classification by 

-1. It is a "neutral" score since right and wrong classifications weigh the same. For error 

sensitive classification the weight of the error should increase.  

For absolute threshold we estimated the threshold function as 

 where  

a = 5.31E-02; 

b = 1.29E-01; 

c = 8.27E-01; 

d = -1.18E+01; 

Increasing a will make classification more error sensitive (lower error rate and lower 

success rate) and decreasing it will give higher success rate (and error rate).  

For relative threshold we set  where a=0.8. As a grows, the 

classification is more error sensitive (lower error rate), and as a reduces the success rate 

grows. 
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Figure 4: The success rate, the error rate and the classification score of every method 
of"unknown" classification  

Naturally, "unknown" classification methods reduce both the error rate and success rate. 

We can see that the relative distance method is superior to the absolute distance, with 

significantly lower error rates on almost every length and equal success rate. We can also 

notice that for neutral classification score, the regular classification is superior to all 

methods. Only when we measure the classification with error sensitive score, the 

"unknown" classification methods become relevant.  

2.2.4 NOISY TEXTS 
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A test to measure the performance of all noise reduction methods was done on several 

(but small) document lengths. The error rate was simulated using the '$' character, that 

randomly replaced text characters according to some error rate. 

Figure 5: The performance of all noise reduction methods on 40 character length 
documents 

Figure 6: The performance of all noise reduction methods on 100 character length 
documents 

From Figures 5 and 6 we can see that usually, just ignoring the unrecognized character, 

relying on the statistics of the recognized text is the straight forward and best result. 

Trigrams perform well only on short noise free texts, and reducing the bigram to the top 

100 performs good also, usually not very different from the ignoring methods. Top 20 

bigrams performs well only on very noisy texts as we can expect, presenting poorer 

performance on other cases and looks suitable only when the amount of noise is 

extremely high. Error correction methods do not perform well, while  replacing '$' with a 

character of neighboring bigram which looks like a useful feature in high noise rates. 

 
 



 27 

 
CHAPTER 3 

 

SPLITTING BI-LINGUAL TEXTS 

In the previous chapter we showed methods for language classification of manuscripts. 

The methods work under the assumption that each manuscript is monolingual, and their 

behavior on multilingual texts is unexpected. As stated before, Genizah manuscripts 

contain many mixed texts which cannot be strictly classified to some language. When we 

look at texts of Jewish biblical philosophy or interpretation, we will usually find Aramaic 

texts with a lot of quotations in Hebrew. Classifying such texts to one language is rather 

useless so instead of classification we are interested in a more general problem of 

splitting the text into monolingual fragments, classifying each fragment to its language. 

3.1 Background 

The problem of fragmenting multilingual texts to monolingual fragments was not 

addressed much, although it is a natural generalization of the language classification 

problem (Hughes 2006). Several related methods can be useful for this type of 

problems. The notion of structured learning is the generalization of the classification 

task (Daume and Marcu, 2005) to extend the target to complex structures such as 

sequences or trees. Theoretical general methods use Markov models or support vector 

machines for such predictions, usually using massive datasets for learning. 

Segmentation problem, as a simple case of structured learning that results 

classification sequences can be addressed using those very general methods.  

More specific methods deal with segmentation of text, such as automatic paragraph 

detection. All such methods use two modules, one classification model and another 

segment boundary searching model. The most popular approach is the sliding window 

technique that looks for the most rapid change in classification scores for detecting 

boundaries. The general scheme of the designed algorithm should not be affected by 
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noise unlike some sliding window approaches which apply classification on very 

short windows, a technique shown as not efficient for classification of noisy 

documents.  

 

3.2 Algorithm Outline 

For the splitting task we assume that no dictionary is available and only n-gram 

statistics of each language is known. For want the algorithm to work even if the 

language shifts every few sentences so we do not assume anything on the length of 

each fragment (we of course cannot count several words as a language shift). In the 

general case of the algorithm there is also no assumption that the sentences in the text 

are marked, so it can be a one long sentence as well. The algorithm has 4 major steps 

1. Split the text to fragments 

2. Calculate characteristics for each fragment 

3. Classify each fragment 

4. Refine classification result and output final results 

3.2.1 SPLITTING THE TEXT  
As stated, we do not assume the documents are split into sentences or paragraphs. So 

the splitting is done in the naïve way of segmenting the text into fixed size fragments. 

Obviously, language cannot shift in the middle of a word so we do perform 

adjustment of the fragments sizes to fall between words. If sentences are marked in 

the text and we assume that language cannot shift in the middle of the sentence, then 

the adjustment described is done for sentence granularity.  

The selection of the fragment size should depend on the language shift frequency. 

Nonetheless, each fragment is classified using statistical properties so it has to be long 

enough to have some statistic significance. On the other hand, if it is too long the 

language transition will be spotted less accurately, and if a fragment contains two 

language shifts the algorithm will not be able to classify the inner fragment (for 
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example if a fragment starts with Hebrew, shifts to Aramaic and end in Hebrew, the 

algorithm can classify it as Aramaic or Hebrew, or split it to two languages in the 

post-processing but cannot spot all three fragments). Moreover, the post-processing 

phase is computationally more expensive, and it's complexity grows proportionally to 

the fragment length so we cannot choose a long fragment size.  

3.2.2 FEATURE EXTRACTION  
The core of the algorithm is classification of the fragments produced by the first step 

of the algorithm. Classification problems are usually reduced to vector classification, 

so there has to be a process of representing each fragment as a vector of features. 

Naturally, the selection of features is critical for successful classification, regardless 

of the classification algorithm.  

 

N-gram distance – The first and obvious feature is the classification of the fragment 

using the methods described in chapter 2.  However, the fragments are 

significantly smaller then the texts that were classified in the previous chapter so 

we can expect the accuracy be lower. The features in this case will be the cosine 

distance from each language model rather than a single feature with the result 

language. This is rather natural since we want to preserve the distances from each 

language model in order to combine it with other features further on. For each 

fragment f and language l we can compute  where  

represents the cosine distance of the bigram distributions of l and f 

 

Neighboring fragments language – We expect that languages in a document are not 

shifting too frequently. It is a reasonable assumption, since usually paragraphs 

tend to be monolingual and at least several sentences in a row are in the same 

language to present some idea. Therefore, if we are sure that a fragment is in 

some language, there is a high chance that the next fragment will be in the same 

language as well. One way to express such dependency is by post-processing the 
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results to reduce noise. Other way is by combining the classification results of 

neighboring fragments as features in the classification of the fragment. Of course, 

not only neighboring fragments can be considered, and all fragments under some 

distance from the fragment can help in classification. For example if we have a 

classification results of HHHAHHH (where H stands for Hebrew fragment and A 

for Aramaic fragment), it looks possible that the A is noise and should be H. On 

the other hand, if the result is HAHAHAH, there is no intuition to turn the middle 

A to H. Some parameter should be estimated to be the threshold for the distance 

between fragments under which they will be considered neighbors. We denote 

Neighbor(f,i) = if i is positive then the i'th fragment after f. If i is negative the i'th 

fragment before f. If i=0 Neighbor(f,i) = f. So for each fragment f and language l 

we can compute  

 

Whole document language - another feature to be considered is the cosine distance 

of the whole document from each language model. This feature tends to smooth 

and reduce noise from the classification output. Note that for a monolingual 

document the algorithm is expected to output a single fragment (the whole 

document) classified to the right language. So for each language l we calculate 

 

 

Clustering – a major drawback of the features presented so far is the fact that they 

resemble statistic similarity between language models and very short text 

fragments.  To increase classification accuracy we would like to classify longer 

texts. In order to do so we can cluster similar fragments together and then classify 

the whole cluster as a single unit. It will obviously be longer than a single 

fragment, so the classification will be more accurate, but there is no guarantee that 

the clustered fragments will be actually monolingual. 

 The clustering is done using complete linkage hierarchical clustering. The idea is 

to perform iterative process where each iteration we unify the two closest clusters. 
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Initially, all fragments are clusters containing only one fragment. Every iteration 

we unify the two closest clusters, where complete linkage stands for the metric 

used for calculating distance between two clusters. The distance between 

clustering is the maximal distance between any elements in the two clusters. More 

formally  where  stands for 

fragment f1 belong to cluster C1. We end this iterative process when the minimal 

distance between two clusters rises above some threshold T (which in turn means 

there are two fragments that the distance between them exceeds the threshold).  In 

the end of the process we can compute the distance between each cluster and each 

language model. For a fragment f we denote the cluster that contains f as Clus(f) 

and for each fragment f and language l we can calculate features  

. The threshold T for stopping the clustering process 

represents the threshold between gaining bigger clusters which can be better 

classified on one hand and risking to get clusters which are not monolingual on 

the other hand and  is established empirically, 

 Since the point of clustering is to get longer text for classification, then as bigger 

the cluster gets the more positive we are in its classification.  Therefore the size of 

the cluster is another feature we want to consider in order to give more 

significance to the  features for longer clusters. So for each fragment f we 

denote  the number of fragments clustered to the same cluster 

as f. 

 

3.2.3 CLASSIFICATION PHASE  
After the features have been extracted, the classification step is rather straight 

forward. We can either use some known supervised learning method such as to learn 

the problem on a test set and produce a classifier or we can try establishing some 

manual scoring formula using the features and classify by the language getting the 

highest score. 
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3.2.4 POS- PROCESSING  
We now want to refine the fragment splitting procedure. We do it the following way:  

We look at the results of the splitting procedure and recognize all language shifts. For 

each shift we try to find the position where the shift takes place (in words 

granularity). We unify the two fragments and then try to re-split the fragment in N 

points. For every such point we look at cosine distance of the words before the point 

from the language the first fragment was classified to and the cosine distance of the 

words after the point to the language the second fragment was classified to. For 

example suppose the fragment A1….An was classified as Hebrew and the fragment 

B1….Bm which appeared right after it in the text was classified as Aramaic. We look 

at the text A1…An,B1…Bm and try to split it in N points (say N =3). So we try to split 

it to F1=A1…A(n+m)/3 and to F2=A(n+m)/3…Bm (suppose ((n+m)/3)<n). We look 

at cosine distance of F1 to Hebrew and F2 to Aramaic since those were the languages 

the fragments were originally classified to. Then we try to look on F1 = 

A1…A(2*(n+m)/3) and F2 = A(2*(n+m)/3)…Bm and so on. We take the split point 

with the lowest cosine distance multiplicative of the two values. The N value is a 

tradeoff between accuracy and computation efficiency. When N is higher we check 

more transition points, but for large fragments it can be computationally expensive.  

3.3 Noise Reduction 

As for language classification, the segmentation algorithm can be extended to handle 

noisy documents. As the splitting and shift recognition phases are not expected to be 

noise sensitive, the classification phase of each segment is the stage to handle noise. 

We test the segmentation success rate on all noise correction methods presented in the 

noise handling section for classification.  
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3.4 Experiments and results 

3.4.1 TEST SETTINGS 
We want to test the algorithm with a well defined parameters and evaluation factors. 

For this purpose we will create artificially mixed documents, containing fragments 

from two different languages (we can do it using Hebrew and Aramaic which are 

difficult to distinguish, Hebrew and Judeo-Arabic where classification is easy and the 

fragmentation is the main challenge or do it on three languages). The fragments will 

be produced using a procedure that accepts two parameters: The desired document 

length d and the average fragment length l – where fragment is a continuous text 

block of only one language. Obviously . The procedure will iteratively 

randomize a number in the range [l-20,l+20]  and will take a substring in this size 

from a corpus of one language. The substring will be adjusted to contain whole words 

only. It will repeat this on all corpora of all other languages and then will restart with 

the first language until the whole text will reach the size of d.  

Obviously l and d are of significance. For a very small l, it will be very difficult to 

fragment the document exactly since the text blocks will not be long enough for 

statistic tests. As for d, it is clear that the average number of fragments inside the 

document is . As n grows larger it is more difficult for the splitting algorithm to 

be right in all fragments and since n grows with d we will expect to see a higher 

absolute error rate. 

3.4.2 SUCCESS MEASURES 
Obviously the splitting procedure will not be perfect and we cannot expect it to 

precisely split the document to the original fragments. Given that, we want to 

establish some measures for the quality of the splitting result. We would like the 

measure to produce some kind of score to the algorithm output, using which we can 

indicate whether a certain feature or parameter in the algorithm improves it or not. 

However, the result quality is not well defined since it is not clear what is more 
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important: detecting the fragment's boundaries accurately, classifying each fragment 

correctly or even split the document to the exact number of fragments.  For example, 

given a long document in Hebrew with a small fragment in Aramaic, is it better to 

return that it actually is a long document in Hebrew with Aramaic fragment but 

misidentify the fragment's location or rather recognize the Aramaic fragment 

perfectly but classify it as Judeo-Arabic.  

We established three evaluation measures, using which we test the algorithm 

accuracy: 

 

Correct word percentage – the most intuitive measure is simply measuring the 

percentage of words classified correctly. Since the "atomic" block of the text is words 

(or sentences in some cases described further), which are certainly monolingual, this 

measure will resemble the algorithm accuracy pretty good for most cases. It is 

however not enough, since in some cases it does not reflect the quality of the 

splitting. Assume a long Hebrew document with several short sentences in Aramaic. 

If the Hebrew is 95% of the text, a result that classifies the whole text as Hebrew will 

get 95% but it is actually pretty useless result and we may prefer a result that 

identifies the Aramaic fragments but errors on more words (say classifies the two 

Hebrew sentences before and after the Aramaic sentence as Aramaic also). 

 

Fragment count ratio (FCR) – The measure estimates the algorithm sensitivity to 

language shifts. It counts the difference between the real fragments number to the 

fragments number returned by the algorithm. To normalize it is divided by the 

number of real fragments. Obviously . It will indeed resemble the 

problem previously described, since if the entire document will be classified as 

Hebrew the FCR score will be very low as the actual fragments number is much 

higher than one.  
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Splitting edit-distance (ED) – Counting the fragments number (FCR) will allow 

evaluating the sensitivity of the splitting in the algorithm. However it does not 

resemble the quality of the classification stage output. Going back to the same 

example, the FCR will return the same result even if the algorithm will recognize the 

Aramaic fragment as Judeo-Arabic. In order to evaluate if the algorithm classifies 

right, we will define the following measure: If we label each language in the language 

set by 1…n. such that each document can be represented by a vector representing the 

languages of its fragments. The ED will be the edit-distance between the vectors of 

the actual fragment decomposition to the vector produced by the split of the algorithm 

(this measure is not normalized so it supposed to grow with d/l) .For instance, given a 

document which contains Hebrew text, then Aramaic then Hebrew and the Judeo-

Arabic will be presented as HAHJ.  If the algorithm misidentified the Aramaic 

fragment it will return HJ so the ED will be the edit distance between HAHJ and HJ 

which is 2. If it will misclassify the Judeo-Arabic as Aramaic and produce HAHA the 

ED will be 1. We can notice that if the language set contains only two languages, 

there is no point to the ED measure since it will return the absolute value of the FCR 

measure. Due to the fact that each character in the classification language vector is 

different from the character following it (if they are the same they would be unified to 

the same character) the edit distance on binary vectors is just the length difference up 

to ±1.  

Therefore we will only use this measure when the language set contains more than 

two languages. 

3.4.3 NAÏVE SPLITTING  
To get a reference on each feature of the algorithm we will run a naïve algorithm on 

the documents. The basic algorithm will simply split the document, classify each 

fragment in the way documents are classified and output the result. We want to test 

how d and l affect each classification parameter using this naïve scheme.  
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Table 2: The splitting results of artificially mixed texts from 
three languages. The d and l parameters are the 
length of the document and the fragment 
respectively, and d/l is the average number of 
fragments in a document. For each d and l we 
calculated the average evaluation measures. 

From table 2 we can see how the measures behave on various document and fragment 

lengths. First of all, it is easy to see that as l grows, the correct word percentage grow 

as well regardless of document length. This is rather intuitive since longer fragments 

are easier to recognize and classify. The FCR is obviously strongly dependant on the 

number of fragments, and if the number of fragments in a document grows it is harder 

to accurately estimate it. We can notice that although the algorithm splits the 

document to fragment of 40 characters, if the average fragment length is 50 characters 

d l d/l Correct words FCR ED 
500 50 10.00 0.729 1.24 1.36 
500 100 5.00 0.827 -0.48 0.56 
500 150 3.33 0.847 -1.33 1.33 
500 200 2.50 0.869 -1.77 1.77 
500 250 2.00 0.902 1.45 1.45 
1000 50 20.00 0.729 -2.64 2.68 
1000 100 10.00 0.824 -0.62 0.9 
1000 150 6.67 0.856 -1.52 1.56 
1000 200 5.00 0.85 -2.75 2.79 
1000 250 4.00 0.88 -2.61 2.61 
1500 50 30.00 0.718 4.4 4.48 
1500 100 15.00 0.813 -1.1 1.42 
1500 150 10.00 0.841 -2.21 2.33 
1500 200 7.50 0.859 -3.67 3.69 
1500 250 6.00 0.882 -3.46 3.5 
2000 50 40.00 0.716 5.93 5.95 
2000 100 20.00 0.818 -0.82 1.54 
2000 150 13.33 0.838 -3.28 3.36 
2000 200 10.00 0.86 -4.47 4.49 
2000 250 8.00 0.874 -4.63 4.63 
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the algorithm underestimates the number of fragments (splits it to fewer fragments 

than needed). When the average fragment length is 100 and more the algorithm 

overestimates the number of fragments. The last observation is that ED is very close 

to the FCR, probably due to low rate of misclassification, so further test will consider 

only the correct words percentage and the fragment count ratio. 

3.4.4 FEATURE EVALUATION  

3.4.4.1 Neighboring fragments 

The first enhancement to consider is the way fragment's classification is affected 

by neighboring fragments. To do that we begin by checking if adding the cosine distance 

of the closest fragments will enhance the algorithm performance. We 

define . For the 

test we set a=0.4  
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Figure 7: The word percentage of the algorithm with considering neighbors and without 
them as a function of l (d was chosen to 1500). 

Figure 8: The fragment count ratio of the algorithm with considering neighbors and 
without them as a function of l (d was chosen to 1500). 

We can see that on long fragment lengths the neighboring fragments improve 

classification, while on shorter ones classification without the neighbors was superior. It 

is not surprising that by using neighbors the splitting procedure tends to split the text to 

longer fragments, which has good effect only if fragments actually are longer. We can 

also see from Fig 8 that the FCR is now positive with l=100 which means the algorithm 

underestimates the number of fragment even when each fragment is 100 characters long. 

By further experiments we can see that the a parameter is not significant, and we fix it on 

0.3. 

As expected, looking at neighboring fragment can improve results in most cases. 

The next question to be asked is if farther neighbors can improve it also. We try the 

following scoring function: 

 . N stands 

for the longest distance of neighbors to consider in the score. The a is set to 0.3. 
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Figure 9: the word percentage of the classification for different values of N 

We can see that increasing N does not have a significant impact on the algorithm 

performance, and on shorter fragment lengths performance drops with N. We conclude 

that there is no advantage at looking on far neighbors and looking on the closest 

fragments is enough. 

3.4.4.2 Clustering 

Next thing we test is how the clustering method described above can enhance the 

algorithm. As stated before, the clustering refines fragment's classification by classifying 

similar fragments in the same document together which can allow more accurate 

classification since texts are longer. There are several parameters to consider: since the 

clustering method is hierarchical, there needs to be some similarity score under which we 

stop clustering. We set this similarity to 0.55, meaning two fragments which have lower 

similarity then 0.55 cannot be clustered together. 

 Table 3: Fragments couples and their cosine similarity  

To get some perspective Table 3 demonstrates fragments couples with their 

cosine similarities. We can see that fragments with over 0.6 similarity usually have 

Fragment 1 Fragment 2 
Cosine 

similarity 
לעני אלהים סח יב אדני יתן אמר 

 0.56 את תמר אחתו יג לג ועתה אל ישם אדני המלך המבשרות צבא

תקבל אישתא עלתא הוא קורבן דמ

 ברעווא קודם
למדבחא עלתא הוא קודם לאתקבלא ברעווא 

 0.78 קורבנא

לבדו מת כי על פי אבשלום היתה 

 שומה מיום ענתו
על אדמת עמי קוץ שמיר תעלה כי על כל בתי 

 0.52 משוש

לעיני בני עמי יהבתה לך קבר מיתך 

 0.49 כספא דמי חקלא סב מיני ואקבר ית מיתי תמן וסגיד אברהם

ישראל ואפתח את פי  אל בית

 ויאכילני את המגלה
את המגלה הזאת אשר אני נתן אליך ואכלה 

 0.61 ותהי
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common words (even long ones), a fact that makes it reasonable to assume they are in the 

same language. When similarity drops, the fragments look more random and we do not 

want to cluster them together for classification. 

 

Figure 10: The word percentage rate of the algorithm with and withuot a clustering phase. 

As seen in Figure 10 the clustering phase does not modify results dramatically, regarding 

the other features of the algorithm. It can be explained by the fact that clustered 

fragments were already correctly classified where the mistaken fragments that needed 

their classification corrected were not clustered because of their anomaly.   

 

3.4.4.2 Post-Processing 

Another thing we test is the post-processing of the splitting results to refine the 

initial fragment choice. We try to move the transition point from the original position to a 

more accurate position using the technique described above. We note it cannot affect the 

FCR measure since we only move the transition points without changing the 

classification. As shown in Figure 4.5 it does improve the performance for every value of 

l 
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Figure 11: The correct words percentage of the algorithm with and without post-
processing (the N value was set to N=5) as a function of l 

3.4.5. SENTENCE ACCURACY  

To test the success rate on sentences, we do the same procedure as for words, but the 

classification and mixed fragment creation works in sentence granularity. For simplicity, 

we mark 8 consecutive words of the same language as a sentence and mark the end of it 

by '.'. In the artificial creation phase, each fragment contains several language of each 

language (instead of creating fragments by the number of characters, we now create it by 

number of sentences). In the splitting phase we do not split it at arbitrary word, since it is 

certain that each sentence is monolingual. Therefore, we skip the refinement stage at the 

end of the algorithm and test how good is the sentence rate classification (what 

percentage of the sentences were recognized correctly), and the improvement of the 

algorithm using neighboring fragment data. We denote that for short fragment length 

documents each fragment contains only one sentence, so the most we can expect on those 

documents is the accuracy of language classification on sentence length (about 30 

characters) texts. The results are in table 4 and we can see that for low l values the 

success rate is even lower than the word percentage, since it uses only language 

classification of sentences (the neighboring data only decreases accuracy in this case 
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since neighbors are surely have different language). For longer fragments the 

classification rises above the words percentage 

 

 

 
 

 

 

 

 

 

 

Table 4: The percentage of the sentences correctly identified by the algorithm, with and 
without neighboring fragments data, compared to the percentage of correct 

words percentage. 

3.4.6. NOISE REDUCTION  

To test the noise reduction we artificially noise the text by randomly replace some letters 

with the "$" character. We denote the desired noise rate as P and for each letter 

independently replace it with the "$" character with probability P. Since the replacement 

of each character of the text is mutually independent, we can expect normal distribution 

of the error positions in the text and the correction phase described above does not 

assume anything about the error creation process. The error creation does not assign 

different probabilities for different characters in the text unlike natural OCR systems or 

other noisy processing. 

l 
Correct 
words 

percentage 

Correct sentence 
percentage (no 

neighbors) 

Correct sentence 
percentage (with 

neighbors) 

50 0.72 0.68 0.59 

100 0.81 0.84 0.81 

150 0.84 0.87 0.88 

200 0.86 0.87 0.92 

250 0.88 0.88 0.93 
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Figure 12: : The algorithm word accuracy as a function of the noise rate P. Each line 
shows the reduce in accuracy for every fragment length 

Not surprisingly Figure 12 illustrates that the accuracy reduces as the error rate rises. 

However, it does not significantly drop even for very high error rate, and obviously we 

cannot expect the error reducing process will perform better then the algorithm performs 

on errorless text.  
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Figure 13: The performance of the correction methods above as for each error rate. 

Figure 13 illustrates the performance of each method. It looks like looking at most 

common n-grams does not help and so is correcting the unrecognized character. Ignoring 

the unrecognized character, using either bigrams or trigrams, or estimating the missing 

unrecognized bigram probability show the best and pretty similar results. 
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4.3.5  
CHAPTER 4 

 

CORPUS SEARCHING ERROR CORRECTION 

The identification of the language opens possibilities for creating simple catalogues and 

enhances search options over digitalized documents. As for text produced by an OCR 

process, it opens the option of post-process the text to enhance OCR accuracy. This is 

especially important for extremely noisy OCR processes, where the produced text cannot 

be used without further improvement.  

A common technique in OCR post-processing is approximate string matching. We 

assume the text is a part of some big known corpus, and the problem is reduced to finding 

the correct sub-text in the corpus that corresponds to the processed document. In 

processing Hebrew manuscripts, it highly likely that the manuscript is a part of some 

known book and searching it can reveal the text that the OCR could not accurately 

recognize. Assuming we identified the language using the techniques from the previous 

chapters, we can use those language models also to improve the OCR result. This is 

relevant for extremely noisy texts, for which searching for approximation in the corpus 

may not provide with good results. 

4.1 Background 

String searching is a well studied problem in computer science with many established 

algorithms and strong theoretical background. The basic problem of finding a string 

in a long text has well known solutions such as Knuth-Morris-Pratt (KMP) and 

Rabin-Karp algorithms, which are linear in the text size. The problem of approximate 

string matching is a generalization of this problem, where the goal is to find a 

substring of the text that best matches some search pattern, where matches are ranked 

using some distance functions. The approximate string matching has applications in 
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variety of fields in computer science especially computational biology, information 

retrieval, spell checking and more.  

4.1.1 EDIT -DISTANCE 

To deal with approximate matching, we first need to define what an approximate 

match is. This of course depends on the application, but one of the most popular 

similarity measures of string is Edit-Distance, also known as Levenstein distance. The 

edit distance between two strings is defined by the minimal number of edit operations 

needed to be performed on one string for it to exactly match the other. The edit 

operations allowed in the basic form of edit distance are insertion, deletion and 

substitution of letters. For example, given the words “train” and “ruins” we can perform 3 

edit operations: deleting the ‘t’ letter (getting rain), substitution of ‘a’ by ‘u’ (getting ruin) 

and inserting the ‘s’ character at the end to get “ruins”. Hence, the edit distance is 3.  

Edit distance is highly suitable for OCR correction purposes, since the allowed 

edit operations are pretty consistent with the errors an OCR engine may perform. It is 

frequent for an OCR to skip a character or to recognize some irrelevant symbol as a letter 

(insertion and deletion operations), and of course confuse one character with another 

(substitution). We can use edit distance to approximate the probability the OCR engine 

will produce one string from the other, in the sense that the lower the edit distance is , the 

higher the probability for the OCR to produce one string as an output on the second 

string. A generalized version of the edit distance problem, assigns different weights for 

insertion of each character, deletion of each character and substitution of each character 

with each other character. This can match the different probabilities of mistakes made by 

the OCR engine (it is more likely for the OCR to replace two characters that have 

geometric similarity or to insert a character with simple geometric shape). Other string 

distance functions do not reflect the nature of OCR engines. The popular Hamming 
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distance allows only substitution of letters, but gives infinite distance to two strings with 

different lengths which will assign zero probability for an OCR to miscalculate the length 

of its input (which is way above zero obviously). The generalization of Levenstein 

distance, Damerau-Levenstein is popular in spell correction because of the additional edit 

operation of substitution of two letters. As oppose to human typing, which have high 

probability of confusing the characters order, an OCR is an automatic procedure that 

scans the text linearly, so this function does not suit our requirements also. Other string 

distance function popular in natural language processing usually use phonetic or semantic 

word properties while OCR usually uses geometric properties of the characters. 

The edit distance between two strings is usually computed using a dynamic 

programming procedure. The computation complexity is O(n*m) where n and m are the 

lengths of the two strings.  

4.1.2 APPROXIMATE STRING MATCHING METHODS  

There are several approaches to the approximate string matching problem. Some 

of them are mainly theoretical in nature, where the practical ones are dynamic 

programming, filtering and indexing. 

Dynamic programming techniques are a search generalization of the distance 

computation method, by trying to compute distance from every possible starting point in 

the text. The run time of those methods is usually close to O(n*m) where n is the text 

length and m is the pattern length. Main drawback of those methods is the large space 

requirements due to the dynamic programming matrices needed to be managed. For large 

corpora this can make it inapplicable since there are searches of patterns of thousands of 

characters in texts of tens of millions of characters. 



 48 

Filtering methods use heuristics to eliminate indexes in the text that cannot be the 

best solution. There is usually some fast scanning of the text which will make the search 

phase more efficient. The search phase usually makes use of dynamic programming 

techniques, so worst case scenarios will be similar to the dynamic programming 

complexity. Those methods are much more convenient for our purpose.  

Indexing methods preprocess the text, which in turn enhances the matching 

procedure. Those methods are suitable for applications that perform multiple searches on 

the same text.  The indexing is usually computationally expensive and has high memory 

consumption and the search algorithms are complex and difficult to modify. 
 

4.2 Error rate estimation 

Applying string matching techniques for correction of OCR process has unique 

properties, due to the unknown accuracy of the OCR process. Although edit-distance is 

suitable for estimating the probability of a string being produced by the OCR, there is still 

no guarantee that the closest substring in a text in terms of edit distance is the actual 

string. In other words we want to estimate how efficient will application of string 

matching techniques to OCR correction problem and what OCR accuracy is needed for it 

to be efficient. 

4.2.1 SINGLE LETTER ALIGNMENT  

The first thing we test is the application of string matching techniques, under the 

assumption the OCR can accurately recognize only one character of the alphabet. We 

first try exact matching, meaning we assume the OCR recognizes the letter perfectly. For 

this purpose we choose an arbitrary string in the text, mask it in the sense we leave only 

one letter in the string and turn all other characters to the ‘$’ sign, and search it back in 
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the text. We denote as  the average number of alignments for substrings of 

length n over 500 random strings which was masked to contain only the letter l. The use 

the bible, which is 1505034 characters long, as the text to search in. We expect the 

number of alignments to rise as the text grows 

 

Figure 14: The number of possible matches for string masked by three different letters, as 
a function of the string length. 

 

As shown in Figure 5.1, we can see that for frequent letter (such as ‘י’ which has 10% 

frequency), the search yields a single match on strings longer than 110 characters. For 

rare characters, even on 200 character strings, it still has over 1000 correct matching, 

making the search irrelevant, so if OCR recognizes only rare characters we demand much 

longer documents.  

4.2.1.1 Single letter with errors 
After approaching the straight forward approach of exact matching, we will try to extend 

it to inexact substrings. We still assume the availability of only one letter. Suppose the 

substring is a copy of some fragment of the original text, while errors can be taken place 

in the copying process. We can look at a probability matrix of copy errors. Suppose we 
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have a probability of  to get a letter l in the copy even when the original text contained 

something else. It means that we have a probability of only  to get non l character 

(denote it by $) in the copy when there appeared $ in the original text.  Symmetrically, 

we define by   the probability of getting $ in the copy when the original text contained 

l and it means we only have  probability to copy the letter l correctly. 

For the test we set P1=0 and P2=0.05. This means that the OCR does not produce “false 

positives” and identify l where it did not appear. It does have a 0.05 probability to miss a 

character l and produce something else. For example given a string “אדאבדאהדאבדא” which 

contains 4 appearances of the character 'ד', the probability of getting “$ד$$ד$$ד$$ד$” 

(exactly correct OCR) is  , since the probability of correct recognition of the letter is 

0.95. The probability for “$$$$ד$$ד$$ד$”   is  (3 correct identifications and one 

mistake). This can be the nature of a very conservative OCR, that identifies some 

character only when there is very high probability it is actually it and therefore does not 

produce false positives.  

The test we produce is selecting an arbitrary string, leave only a character l in the string, 

while in probability P2 we replace the appearances of l to $. Then the new patter is 

searched in the text and the match with the highest probability (as defined above) is 

returned. We are interested when the returned match is actually the string that was 

selected and masked. We use the character  'ל' as l which is an average letter with 0.05% 

percent appearance. 

 

Pattern length 
Percentage of correct  

matches 
Average rank of original 

string 

500 1 1 

350 1 1 

250 0.995 1.025 

200 1 1 
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Table 5: The percentage of correct matches of the patterns with errors searched in the 
bible. The second rows shows the average rank (in probability terms) of the 

correct string 

As shown in table 5 for fragments of 200 characters and longer, there is high probability 

for the best match to actually be the correct fragment. For fragments longer than 100 the 

results are reasonable, below that results are poor, so we cannot expect string matching to 

show good performance. When the error rate raises the success rate drops as shown in 

figure 15. The performance is reasonable for error rates below 25%. 

 

160 0.985 1.015 

120 0.945 14.385 

100 0.86 21.61 

80 0.675 514.93 

60 0.375 1760.85 
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Figure 15: The percentage of correct matches of the patterns with errors searched in the 
bible as a function of the OCR error rate. The patterns are 200 characters 

long  

4.2.2 MULTI LETTER ALIGNMENT  

When scaling to several letters, we obviously expect the searching success rate to 

increase. It is obvious due to the higher rate of recognized characters but also due the 

veracity of symbols needed to be matched. Figure 16 illustrates the success rate for 

matching patterns containing various amounts of different letters, and we can see 

accuracy increases with the increase with number of letters. 
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Figure 16: The percentage of a single match rates for a pattern in for various available 
letter numbers as a function of fragment length. 

 

 

4.3 Proposed Algorithm 

We propose an algorithm for post-process of OCR results by approximately 

searching a corpus of text. The algorithm has to deal with relatively large patterns and 

corpora, and the fact that the pattern is extremely noisy, so the search result may be 

considerably different from the pattern 

4.3.1 THE INPUT  

The corpus is a big text (several millions of characters denoted by T. The OCR 

results are given by the following: for each character in the OCR’ed text, denote it by  

we get a set of characters  and a set of probabilities  which 

stand for the probability that the character I of the pattern (the scanned text) is   . 

Notice that the  do not necessary add to 1, since some of the probabilities are 

neglected. For most characters only one option   is given. 

We assume that the accuracy of the OCR is pretty low, which means that only 

about half of the top scored letters produced by the OCR are correct. The probabilities of 

each character are not high (most of them below 0.5 which is just a good guess), and in 

addition insertions and deletions of characters can occur frequently. On the other hand, 

the pattern is assumed to be quite long so we can use that fact to make more accurate 

search.  
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4.3.2 THE ALGORITHM  

The proposed algorithm is actually a filter algorithm, where the filtering is 

heuristic, and uses substring of the pattern. The length of the corpus and fragment makes 

it very difficult to run a classic dynamic programming algorithm. The fact that the input 

is so noisy will make most of the filter algorithm inefficient.  

The algorithm proposed follows the following scheme: 

1. Clear the corpus and the pattern from characters that are poorly recognized 

2. Iteratively choose a substring of the pattern and search it in the corpus 

3. Combine the results to the one best result 
 

The first stage handles the cleaning of the pattern from the noisy characters. We estimate 

the probability of each character as the average of the probabilities attached to the 

character at all its appearances. More formally, 

 . If the OCR engine 

proposed the character l as an option for the I'th place of the pattern, we consider it in the 

average of the probabilities of l. The estimation P(l) is an approximation for how accurate 

the engine handles the character l. The estimation is a combination for the OCR recall 

and precision on the character. After the estimation of accuracies for all character we pick 

a threshold under which all letters with lower accuracy will be neglected.  The threshold 

should be estimated empirically and depends on the accuracy of the OCR. As shown in 

the previous section, even one character with reasonable error rate can be enough for 

searching a fragment of even medium length. Therefore the threshold should be set high 

enough for the extra recognized characters will increase rather than decrease the success 

of the search. All characters below the threshold are replaced by an "unknown" character 

both in the pattern and the corpus. 
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The second step is iterative search. In each iteration, we select a substring of the pattern 

and search it in the corpus. The length of the substring should be the shortest possible, 

such that using the characters chosen in step 1, the search is expected to return one result 

only. In other words, we would like to search a sub-pattern long enough so the search will 

return it's match (or matches) in the corpus with high probability. When searching, we 

search using the dynamic programming technique, assuming the sub-pattern is relatively 

short for efficient search. The result of each search is an interval [a..b] where a and b are 

the starting and ending indexes of the match in the corpus. We define the following 

variables: 

l- the sub-pattern length, L - pattern length 

r  – the index of the sub-pattern in the pattern 

a,b – the indexes in the corpus that define the match of the sub-pattern 

Insert ratio  - a parameter estimating the frequency of insertion mistakes made by 

the OCR engine.  
 

From a, b we define an interval [i1..i2] which will estimate the position of the whole 

pattern in the string. Since the sub-pattern is in indexes [a..b] we naturally would expect 

to find the whole pattern at indexes [a-r…b+(L-(r+l))], by extending the match of the 

interval for by the distance of the sub-pattern form the pattern boundaries. Since we 

expect an amount of insertion mistakes we extend the interval to [a-

(1+InsertRatio)*r…b+(1+InsertRatio)(L-(r+l))] to estimate the alignment of the pattern 

with the mistakes. The estimated interval is the result of each search iteration.  

In the third step we combine all intervals to a single result. The combination algorithm is 

as following: 
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1. Initialize   

2. For each [i1,..i2] in Results 

2.1. If  contains Interval such that    

2.1.1.  

2.1.2.  

2.1.3.  

2.2. Else 

2.2.1. 

 

3.  

4. [a..b] = The search of pattern in Intmax.Intersection 

5. Return [a..b] 

The combination algorithm is based on the fact the corpus is significantly longer than the 

pattern. We assume that given an interval returned we compare it to all other intervals 

returned by other searches. If two intervals intersect they are considered to be the same 

interval that is shifted. If an interval does not intersect with others it is considered new. 

The algorithm tries to unify all intervals and counts the number of intervals joined in each 

union and we expect for only one interval to be counted significant number of times and 

classify all others as noise. We then search the fragment back in the interval to return the 

final result. 
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4.4 Testing 

The testing was made on several outputs of an OCR system operated on Genizah 

fragments. The input was as described in the previous chapter, where the number of 

iterations was 20 and the sub-pattern length was 50. The minimum accuracy, under which 

characters were omitted, was set to 0.5.   

 
Original Text OCR result OCR output 

with prob > 
0.5 

Algorithm 
Output 

Best Match 

שמייםליהוהוהארץנתןלבנ
יאדםלאהמתיםיהללויהול
אכלירדידומהואנחנונברךי
המעתהועדעולםהללויהא
הבתיכיישמעיהוהאתקולי
תחנוניכיהטהאזנוליובימי
אקראאפפוניחבלימותומצ
רישאולמצאוניצרהויגוןאמ
צאובשםיהוהאקראאנהיהו
המלטהנפשיחנוןיהוהוצדי
קואלהינומרחםשמרפתאי
םיהוהדלתיולייהושיעשובי

חיכיכייהוהגמלענפשילמנו
ליכיכיחלצתנפשיממותאת
עינימןדמעהאתרגלימדחי
אתהלךלפנייהוהבארצות
 החייםהאמנתיכיאדבראני

שסיסלידודארץכעןלבני
אדסלאדתיילוידולאכליו
רדידומואשנונברךידעת
דעולסדלוידאדזבעיכיש
עידודארוליעחנוניכידסר
אזנויוביסיארראאוניחבל
ישתומצרישאולצאוניצדו
גוןאמצאובשםידואררא

ודלטכשינוןידודוצאנאיד
דידואדינוסרחסשוערת
איסיזוזדלייייליידושיעשו
בינשילסנוחיכיכיידודגמ
לעיכיכיחלצתנשיממועא
עעיניסדסעדאערגליאע
דלךלניידודבארדחייפד
אסנעיכיאדבראניגליאע
 דל

ש$י$$ידוד$רץ$$ן$ב
$יאדס$אד$יי$וידולא
כליורדידו$ו$$נו$$$ך
יד$$ד$$לסדלוידאד$
ב$יכי$$ידוד$$ו$י$ח

נויו$י$יאנו$י$יד$ראז
$ר$או$י$בלי$$ו$$ר
יש$ו$צאוני$דוגו$א$
$א$$שםי$וא$ראא$
אידודל$$שי$$ןידודו
$די$ואדינו$רחסשו$
ר$$י$י$ו$ד$י$יי$יידו
שיעשובי$$י$$נוחיכי
כיידוד$$לעיכי$יחל$
$$שי$$ו$א$עינ$$ד
$$דא$רג$יא$דלךל$
יידו$$$רד$י$פדא$$
$יכי$דברא$יג$יא$ד
 $ל

והארץנתןלבניאדםל
אהמתיםיהללויהולא

ידומהואנחנונכלירד
ברךיהמעתהועדעול
םהללויהאהבתיכיי
שמעיהוהאתקולית
חנוניכיהטהאזנוליוב
ימיאקראאפפוניחבל
ימותומצרישאולמצא
וניצרהויגוןאמצאוב
שםיהוהאקראאנהי
הוהמלטהנפשיחנוןי
הוהוצדיקואלהינומר
חםשמרפתאיםיהוה
דלתיולייהושיעשובי
נפשילמנוחיכיכייהוה
גמלעליכיכיחלצתנפ
שיממותאתעינימןד

גלימדחיאמעהאתר
תהלךלפנייהוהבאר
צותהחייםהאמנתיכי
 אדבראני

ליהוה והארץ נתן 
לבני אדם לא המתים 
יהללו יה ולא כל ירדי 
דומה ואנחנו נברך יה 
מעתה ועד עולם 
הללו יה אהבתי כי 
ישמע יהוה את קולי 
תחנוני כי הטה אזנו 
לי ובימי אקרא 
אפפוני חבלי מות 
ומצרי שאול מצאוני 
צרה ויגון אמצא 

ם יהוה אקרא ובש
אנה יהוה מלטה 
נפשי חנון יהוה וצדיק 
ואלהינו מרחם שמר 
פתאים יהוה דלתי ולי 
יהושיע שובי נפשי 
למנוחיכי כי יהוה גמל 
עליכי כי חלצת נפשי 
ממות את עיני מן 
דמעה את רגלי מדחי 
 אתהלך לפני י

עניתימאדאניאמרתיבחפז
יכלהאדםכזבמהאשיבליהו
הכלתגמולוהיעליכוסישועו

בשםיהוהאקראנדתאשאו
ריליהוהאשלםנגדהנאלכל
עמויקרבעינייהוההמותהל
חסידיואנהיהוהכיאניעבדך
אניעבדךבןאמתךפתחתל
מוסרילךאזבחזבחתודהוב
שםיהוהאקראנדריליהוהא
שלםנגדהנאלכלעמובחצר
ותביתיהוהבתוככיירושלם
הללויההללואתיהוהכלגוי
םשבחוהוכלהאמיםכיגבר
עלינוחסדוואמתיהוהלעול
כםהללויההודוליהוהכיטוב

עניסאדאניאסדעיבהזיכלד
אדסכוזככלדזאדסכוזכללד
אשדודכלעגמולודיעליכוסי
שועועאשאובשסידזודזאד
ראכדרילידודאשלנגדדנאל
כלעמויבעיניידודדמותדלחי
דיואנידודכיאניעכדךאניעב
דךבןאמתךעחתלוסרילדא
זבחזבהתודדובשסידודאד
זראנדרילידודאשלנגדדלכ
לעובהותביתידודבעוככייו

ושלסשלסבתלדזודזבעככ
דללוידדללזאעידודכלגוידז
ללזאעלוזכלגושכחזדוכלד
אומיסכיגכעליוחסדוואעעיו

וכלדאומיסכי
עולסדללויד

$$
י$$ד$נ$א$$$יב$ז$
כ$ד$דסכוז$כ$דז$ד
סכוז$$$ד$שדודכ$$
$$ו$ודי$$יכוסישו$ו$
אשאובש$יד$וד$א$$
$$$רי$י$וד$ש$נ$ד
ד$$לכל$$ויבעי$יידוד
ד$ו$דל$ידיוא$ידודכי

$בדךבן$א$י$כדךאני
$$ך$$$לו$ריל$$זב
$$ב$$ודדו$שסי$ו$
א$$ר$$ד$ילידודאש
ל$$דדלכ$$וב$ו$בי$
$דוד$$וככייוש$$ב$
$ד$וד$$$ככוש$$ד$

יתימאדאניאמרתיב
חפזיכלהאדםכזבמ
האשיבליהוהכלתגמ

ליכוסישועותולוהיע
אשאובשםיהוהאקר
אנדריליהוהאשלםנג
דהנאלכלעמויקרבעי
נייהוההמותהלחסיד
יואנהיהוהכיאניעבד
ךאניעבדךבןאמתךפ
תחתלמוסרילךאזב
חזבחתודהובשםיהו
האקראנדריליהוהא
שלםנגדהנאלכלעמו
בחצרותביתיהוהבת
וככיירושלםהללויהה

אני אמרתי בחפזי כל 
האדם כזב מה אשיב 
ליהוה כל תגמולוהי 
עלי כוס ישועות אשא 
ובשם יהוה אקרא 
נדרי ליהוה אשלם 
נגדה נא לכל עמו יקר 
בעיני יהוה המותה 
לחסידיו אנה יהוה כי 
אני עבדך אני עבדך 
בן אמתך פתחת 
למוסרי לך אזבח 
זבח תודה ובשם 

קרא נדרי יהוה א
ליהוה אשלם נגדה 
נא לכל עמו בחצרות 
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$וידדלל$$$י$ודכ$$ו $גכעליוחסדווא ילעולם
ידזלל$$$לו$כ$$וש$
$$דוכלד$ו$י$כיג$$ל
יו$$דווא$$יו$ולסד$ל

וכלד$ו$י$כיג$$
וי$
 $ליו$$דווא

ללואתיהוהכלגויםש
בחוהוכלהאמיםכיגב
רעלינוחסדוואמתיהו

ההודוהלעולםהללוי
ליהוהכיטובכילעולם
 חסדויא

בית יהוה בתוככי 
ירושלם הללו יה הללו 
את יהוה כל גוים 
שבחוהו כל האמים כי 
גבר עלינו חסדו 
ואמת יהוה לעולם 
 הללו יה הודו

כבשיביאקרבנולחטאתנק
בהתמימהיביאנהוסמךאת
ידועלראשהחטאתושחטא
תהלחטאתבמקוםאשריש
חטאתהעלהולקחהכהןמד

באצבעוונתןעלקםהחטאת
רנתמזבחהעלהואתכלדמ
הישפךאליסודהמזבחואת
 כלחלבהיסירכאשריוסר

לישייאררונרזתמיריביןוךעי
העלרשןרמושמאררחמברו
שרישמדעלריייןודןחרןרעב
אצכץוזעלידמנץרלרואכדמ
רזושרליסזדורמזבחואכלח
 לסישיומרו

$$$
יי$$ר$נר$$$י$$ביןו
$$$$ע$רשן$$ו$$$
$$$$$$ו$$$$$$$$
$י$$ן$$ן$$ן$$$$$$

$$$$$$$$$$$ו$$ו
$$$$$$$$$$$$$$
$$ז$$ו$$$$$$$שיו
$$$ 

לואחותתובלקיןנעמ
הויאמרלמךלנשיועד
הוצלהשמעןקולינשי
למךהאזנהאמרתיכי
 אישהר

להויאמרואליואישבע
לשערואזורעוראזורב
מתניוויאמראליההת
 שביהואוישלחאליו

החטאתבמקוםהעלהולקח
הכהןמדמהבאצבעוונתןעל
קרנתמזבחהעלהואתכלד
מהישפךאליסודהמזבחוא
תכלחלבהיסירכאשרהוסר
חלבמעלזבחהשלמיםוהק
טירהכהןהמזבחהלריחניח
חליהוהוכפרעליוהכהןונסל
 חלוואם

ריחטאבץזרעליוררכדןמד
מריבבעווןעלרריזברערזאי
דכלדמריישךאליסורזבחיו
רכלרלבריסיבשרזסלבמזז

מזבדלחגירשיוררמיררכר
 ההיבירג

$$$$$$$$$$$
יו$ר$$ן$$$$$$$עוו
$$$$ר$ז$$$$$$$$
$$$$$$$שך$$$$$
$$$$$$ר$$$$$$$
$י$ש$$$$$$$ז$שי
$ר$$יר$$$$$$$$$
 $$$$$$$$י

מיםאשרמעללרקיעו
יהיכןויקראאלהיםלר
קיעשמיםויהיערבוי
היבקריוםשניויאמר
 אלהיםי

גידביזרעאלוירכביהו
אוילךיזרעאלהכייורם
שכבשמהואחזיהמלך
 יהודהיר

והקטירהמזבחהעלאשייה
והחטאתהואוכפרעליוהכה
ןעלחטאתואשרחטאמאח
תמאלהונסלחלווהיתהלכ
הןכמנחהוידבריהוהאלמש
הלאמרנפשכיתמעלמעלו
חטאהבשגגהמקדשייהוהו
 הביאאתאשמוליהוהאיל

ורירזסרדימזרשייחטריזבר
עליורדןעמעורחזמאיחמלר
ונלוורירלככהנחרןוידביאמי
רןאמנכישכירסלמעלוזץטא

ילרבמרייורבירזזיו  

ו$$$$$$$$$$$$יי$
$$י$$$ע$$$$$ן$$
$ור$$$$$$$$$$$$ו
$$יר$$$$נ$$$ו$$$
י$$$$$$$$$יש$י$$
$$ע$$$$$$רב$$$יו
 $$בי$$ז$וי

והארץהיתהתהוובה
ווחשךעלפניתהוםור
וחאלהיםמרחפתעל
פניהמיםויאמראלהי
םיהיאורויהיאורוירא
 אל

ויעלמשםבארשבעויר
אאליויהוהבלילהההו
אויאמראנכיאלהיאבר
 הםאביךאל

Table 6: The algorithm results for several fragments. The columns show the original text, 
the text as transcripted by the OCR, the transcript after the character 

omission, the algorithm results and the best edit distance match of the string 
to the corpus. 

As seen in Table 6, the algorithm presents good results and approximates the original 

fragment well for reasonable OCR performance. The results are similar to the best edit 

distance matching. For extremely noisy OCR output, the results are not accurate, since 

edit distance cannot be a good approximation for the result and other methods need to ne 

applied.  
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CHAPTER 5 

CONCLUSIONS AND FURTHER RESEARCH 

5.1 Conclusions 

The thesis presented methods for three slightly different but connected problems. A 

statistical algorithm for language classification of Hebrew script documents was 

presented, using bigram distributions. The algorithm showed over 95% accuracy for most 

of the documents, rising to perfect 100% performance on documents longer than 800 

characters. It also showed a method for higher precision the error rate by allowing the 

classification algorithm to return an unknown result. 

   An algorithm for segmenting multilingual documents to monolingual fragments was 

introduced, reaching about 90% percent accuracy on 100-200 character length language 

shifts. The accuracy for more frequent language shifts was about 70%. Several methods 

were presented and compared for generalizing the method to handle noisy texts. 

Finally, a heuristic filter algorithm for approximate string matching was described. It 

showed good accuracy results, running significantly faster than classic edit distance 

algorithms. 

5.2 Further research 

While the language classification problem has well established methods, the language 

segmentation has many open questions. The algorithm proposed was extremely sensitive 

to the language shift rate, so a method for approximating this rate can significantly 

increase performance by smarter parameter tuning. Another method for increasing 

performance can be a machine learning approach for parameter estimation, a method that 
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was not tried thoroughly enough in this work. A different direction can be revise the shift 

smoothing process, by trying  different way than trying constant shift points. 

The probabilistic approximate search algorithm needs to be further tested on larger 

datasets, with patterns of various lengths and noise rates. A more accurate selection of the 

sub-patterns can be considered. Another direction can be an OCR ad hoc tuning such as 

considering specific substitution matrixes and error rates and test the change in 

performance. 
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Appendix 1 – collected corpora 

 

English name Hebrew name Language 

Targum Onkelus,  Targum  Unkelus תרגום אונקלוס Aramaic 

Jerusalem Talmud, Talmud Yerushalmi תלמוד ירושלמי Aramaic 

Torah, Pentateuch, Five books of Moses תורה, חומש Hebrew 

Mishnah משנה Hebrew 

The Guide for the Perplexed, Moreh 
Nevukhim 

 Judeo-Arabic מורה נבוכים

Kozari הכוזרי Judeo-Arabic 

Maspik Ovdei Hashem,  A Comprehensive 
Guide for the Servants of God 

 Judeo-Arabic המספיק לעובדי השם

Ibn Ezra Commentaries (short and long) זרא הקדמה לתורה (קצרה אבן ע
 וארוכה)

Hebrew 

Abarbanel Commenaries אברבאנל, פירוש לתנך Hebrew 

   

   

   


