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Abstract

Digitalization of historical and cultural documerntan provide researchers with new
options for conducting research on a variety ofietb. Although OCR systems are the
common method for digitalization processes, the&ysametimes not enough due to the
poor performance of those systems on documentstbdtandwritten, have low contrast,
include shifts in writing style, and have varioushey typical characteristics of
manuscripts. For such documents, OCR needs to $teppacessed to allow successful
utilization of the data contained in the documents.

This thesis proposes various methods for such grostessing, using techniques from the
fields of natural language processing and stasistienguage modeling. Methods are
proposed for language classification, document segation and text searching. These
methods are designed to handle very noisy textsaamduned to work on the Hebrew
language. In this way, the methods can be of ugbernproject of digitalization of the
Cairo Genizah — a collection of ancient and medideaish works. Our methods have
been evaluated on both real and artificially pratudocuments.
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CHAPTER 1

INTRODUCTION

The Cairo Genizah is a combination of importantoaztly works, community records
and ledgers, business and marriage contracts, n@érieiters and more. Among these
documents are original manuscripts in the handaonfdus scholars and personalities of
that era. The digitalization of those manuscrig@a open various research possibilities
for cultural and historical researchers. Nonettgl#isis process poses challenges to the
traditional digitalization processes of scanning eecognition of text by an OCR engine.
The fact that the manuscripts are handwritten, wiemdwriting can vary in style and
clearance, even the fraction of documents writtenHebrew script present a big
challenge to OCR systems. Other properties of toeighents, such as low quality of the
manuscripts, various languages, incomplete pagets @her challenges make it
impossible for an OCR engine to produce result$ tlaa satisfy the lowest demand
needed for any research. The common method forlingndoisy texts is using some
statistical, language oriented post-process omgbdt to increase accuracy.

The post-processing of the text relies on propemiethe language the text is written it.
The tools present a scale up in the level of pingsof the text, from geometric features
of written figures to the linguistic meanings ob#e characters as building blocks for
words. It is common, for example, to correct ermrgewords by matching them to some
known words in a known vocabulary or to measure ghabability of some character
combination in a language. Identification of thettanguage is a preliminarily for those
methods, in case the language is not given and otabe implied from the
script/encoding of the characters. In the casé®fGairo Genizah, the texts appear in a

variety of Hebrew-script languages such as Arantaghrew, Judeo-Arabic, Ladino and
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more. The similarity between those languages adsg from languages similar in style
like Hebrew and Aramaic, to language that sharg satipt with the others, like Judeo-
Arabic. Moreover, many of the documents are mixduocé paragraphs in different
languages, presenting further challenge for thdiegpn of a post-processing tool on
them since a straight forward classification ofglaage cannot be used.
Even after successful identification of the languagf every part of the text, the
application of traditional correcting methods int retraight forward. Due to the low
accuracy of the results produced by the OCR proceseection of text using single word
lookup is not satisfying. On the other hand, a ificemt part of the Genizah documents
are transcriptions of some known Jewish texts, Wwhie can look in pre-prepared
repositories. Therefore, an application of appratenstring matching techniques for
searching the noisy text in this repository camgeful for such post-processing.
For the post-processing of OCR on Cairo Genizatughents we present a multi stage
scheme

1. Identification of the document language

2. Segmenting the document to monolingual fragmentlencase of a multi lingual

document

3. Searching the text in a corpus according to languagognized.

1.1 The Cairo Genizah

The Cairo Genizah is a collection of over 300,080@idh manuscripts found in the
loft of the ancient Ben Ezra Synagogue in Fustatiewal Cairo, to the south-west of
the modern city between the 11th and 19th centufiee dark, sealed, room in the
arid Egyptian climate contributed to the preseoratf the documents, the earliest of
which may go back to the eighth and ninth centuiié® Genizah texts are written in
various languages especially Hebrew, Arabic andm@ia mainly on vellum and

paper, but also on papyrus and cloth. They reptéeermost important discovery of
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new material for every aspect of scientific Hebrawd Jewish studies in the middle
ages. In addition to containing Jewish religiouddesuch as Biblical, Talmudic and
later Rabbinic works (some in the original handshef authors), the Genizah gives a
detailed picture of the economic and cultural bifethe North African and Eastern

Mediterranean regions, especially during the 10tii3th centuries. Its documents
reveal a wealth of information about this previgusltle known period in Jewish

history. Today, a large portion of the Genizah'suoents are available at Cambridge
University Library and at the Jewish TheologicahfB®ary in New York. Smaller

collections are spread out in university librarnjlections across the globe, among
them London, Oxford, Manchester, Paris, Genevaniae Budapest, St. Petersburg,
New York, Philadelphia, Washington and Jerusaleomé& are housed in private

collections.

1.2. Corpora Collection

The algorithms proposed further use statisticalperties of the languages. A
significant work was made for collecting statisti@s those languages, which are not
commonly used in nowadays, and digital copies @ludwents in those languages are not
widespread. The corpora collected for Hebrew costthe "Torah" — the Pentateuch and
the Mishnah - the first major written redactiontbé Jewish oral traditions called the
"Oral Torah" which is also the first major work Babbinic Judaism. For Aramaic, the
corpus contains the Jerusalem Talmud - a colleaiforabbinic notes on the Mishnah
which was compiled in the Land of Israel during #b-5th century. The Talmud, as a
commentary on the Mishnah, contains significant beinof Hebrew quotes, so it is not
pure Aramaic. Another Aramaic book is "Targum Owk& an official Aramaic
translation of the Torah. For Judeo-Arabic, latasrkvwas collected such as "More
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Nevuchim" (The guide for the perplexed) by Maimasdthe "Kuzari" by Rabi Yehuda
Halevy, and "Hamaspik Ovdey Hashem" by Maimonides s

Other collection were obtained for further expernrtse among which are the
"Hazohar" in Aramaic, which is the foundational wan the literature of Jewish mystical
thought known as Kabbalah, Hebrew "Shulhan Aruchiclv is the most authoritative
legal code of Judaism and other Jewish religioukw full list of the corpus is listed in
appendix 1.

For the use of the collection as a statistical rezfee it was processed to be
cleaned of irrelevant characters, unneeded lingsvamious punctuation. It was then

tokenized and several n-gram statistics were deltec

1.3 Related work

Much work have been conducted in the field of OGRtprocessing, most of them
using statistical approaches over N-grams or vdeales. The methods over
vocabularies contain approximate string matchihréeues for searching lists of all
known words of a language such as proposed by Gheal.(2010). Statistical

methods use probabilities over character combinatfor correcting the OCR errors,
combined with confusion matrices (Kukish, 1992).ldkoand Resnik (2005) advice
the use of statistic methods in the case of lowsifgrianguages, where massive
document sets for producing vocabulary are notlavia. Methods for using words
n-gram for such process were also introduced. Hewaditle work has been done on
using those methods on multilingual documents. Apipnate string matching

methods of strings against corpora were surveyedNayarro (2001) and include
dynamic programming algorithms, filtering technigquand approaches using final
automata.
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Work on language classification has been widelynled (Hughes et al, 2006), mostly
as a classification problem. Two approaches domitia works in the area, word
based and character based. Word based approagresem the text as vector of
words and use supervised classification technifprethe identification of language.
The character based approaches do this by compagngm probability distributions
over each language and the text (Hakkinen and 2081).

The processing of multilingual documents was addr@sy Giguet (1996), which
addressed the problem using grammatical words addoé word characters. The
processing was sentence wise, and actually theesggtion process was not issued.
Related work on segmentation of text, usually ehaetic nature, was pioneered by
Hearst (1993) and used sliding window techniquediowing work utilized lexical

chains techniques, clustering, dynamic programnang other techniques (Choi,

2000).
1.4 Structure

The rest of the thesis is structured as followsagiér 2 describes the method for
language classification of documents. Chapter Xrdess the extension of the

method for segmenting multi-lingual documents tonoimgual fragments. Chapter

4, presents the algorithm for searching noisy texts corpus. Each of those chapters
includes a short background, description of therdtigm and experiments made for

testing. Chapter 5 contains conclusions and dissudarther possible research

directions.
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CHAPTER 2

LANGUAGE CLASSIFICATION

An important step in the digitalization processhadnuscripts is language identification.
Apart from using the language to efficiently catale the manuscripts, recognizing the
language is a crucial part for OCR processes. ArRQfdst-processing algorithm

(described in further in this work) assumes knogéedf the language of the manuscript

for choosing the appropriate corpus to scan.

2.1 N-Gram approach

An obvious fact is that different languages, evienointaining the same character set,
have different distribution of the letters appearm Therefore, gathering statistics on the
typical distribution of letters in each languageyniead us to reveal the language of a
manuscript by comparing its letter distributiontke distributions we know. A simple
distribution of the letters may not be enough, sm@mon technique in NLP is using n-
grams which mean computing the distributions ofpaksible combinations of n letters.
Obviously, the number of possible combinations gr@xponentially with n, so usually

the value of n does not exceed 4.

The classification can be described by the follgypnocedure
1. Collect N-Gram statistics on all possible languages
2. Compute N-Gram distribution on the manuscript
3. Compute the distance of the manuscript's distiiouto each language using
some distance function

4. Classify the manuscript as the language with th@mal distance
14



The first task in computing the n-gram distribuaa choosing the n. In our experiments
we tried unigram, bigram and trigram. The charactee considered were all Hebrew
alphabet letters, including “sofiot” (variants ettiers that appear at the end of the words).
The only additional character used was the spaaeacter (* ‘), under the assumption
that different languages can have different wonagies (for languages with shorter
words the space character will have higher appearanunt) and that different languages
tend to have different letters ending a word (amehtbigrams or trigrams containing
those letters followed by space will appear mo8pecifically, when a human tries to
identify Aramaic texts, he may do it by looking feords ending by Alef), a property
strongly correlated with this language. The proligbiunction for an n-gram i is given
by

Count(i)

P@ = Count(j)

X jeall Ngrams
It is easy to see that the denominator, which essilim of all appearances of all n-grams
in the text, is just the length of the text (mim)sThe formula implies that an n-gram that
was not spotted in the text has a zero probabditiact that can be true for some n-grams
(for example n-gram which contains a letter thabesps only at the end of the word
followed by a character which is not space), buhas generally correct. There are
techniques that smooth the distribution functioivingy unseen n-grams a probability
larger than zero, but we chose not to addresgthisiem by smoothing but by adapting
the distance function to handle such distributions.
The second missing detail in the algorithm is tistathce function. Since the distribution
function is discrete, we can actually represeasit vector of probabilities, and transform
the problem to vector distance problem. We triedfthlowing three distance functions:
» Cosine similarity — this function is basically the cosines of thglarbetween two
vectors, measuring how similar are the directiohthe two vectors. The value is

computed using
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dl-dz L icatngrams Paa (1) = Pz ()
lld1ll+ llazll ¥ EEEEHNQ?'EW{PEI.(H} *y EEEEHJ".'-Q?"E?‘J‘IS{P&'!(E:}}

Cosine(dl, d2) =

The function is a similarity measure rather thadistance measure, therefore
when classifying a manuscript, the language with fighest similarity value is
taken (opposed to the minimal distance for othections). It is also symmetric
and normalized to values between zero and one.

KL Divergence [] - the Kullback—Leibler divergence, often refeced as
information gain, is a measure between two distitims, originated from

information theory. The function is defined as daling
( y '\_| I'.. i I;. Pdil:i:l ."I -"I
I{Ldi, dZ = . L. | Pdixl, * In | —szl:i:l_.'
ieallNgrams

Note that there are several problems using thissoreafor classification
purposes. First, the function is not symmetric ¢fene we need to choose
whether d1 is the language corpus distributiorherrhanuscript distribution. It is
common to look at the KL divergence as a measur@otw much a sample
distribution d2 differs from the “true” distributiotherefore we used (after some
testing) d1 as the corpus distribution. Anotherllelnge is the presence of zero

Pm'[i]')
probabilities. If Pa{iy=0 or Paz{i}=0 then E(F'd:(i} is undefined. We

chose to skip all n-grams not present in one ofdistributions, what can of

course distort the distance (for example if the usarnpt and language has no n-
gram in common the distance will be zero althougkhiould be infinity) but

simplifies the function to match our needs.
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* Euclidean distance — really the straight forward approach for measyri

Dist(d1,d2) = Y Pa@ePu®)
distances between vectors. N icallNgrams

2.1.1UNKNOWN CLASSIFICATION
For shorter documents we can expect performanbe pwor. To address this, we can

allow the “Unknown” classification, using which wean reduce the error rate. To
determine when the classification can be set tokHdwn” we need some certainty
measure of the classification. We can then set sbmeshold and classifications with
certainty above the threshold we be consideredicedand below threshold will be
considered uncertain or "unknown". This can be foélpn many cases, especially
when the classification precision is of high impote. Using this method,
"unknown" fragments can be further analyzed (mayiamually) and the classified
fragments are only those of very high certainty.

To get this certainty measure we can look at theneosimilarities of fragments to
their closest language. We obviously expect thengraw as the fragment length

grows. For extracting the certainty measure weusantwo methods:

Absolute distance- If the distance of the fragment to the clasdifenguage is very
high, we can be more certain of the classificatidare we assume that mistakenly
classified fragments will have lower similarity théhe correct ones as presented in
Figure 1. We then use regression to learn a fumcaifathe threshold dependency on
the length. We tried establishing linear logaritbmfunction of the form
threshold = a+ b=In(c+length+d) where a, b, ¢ and d are parameters to be

determined by regression.

17
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Figure 1. The difference between the average eadistance of correctly classified texts
and mistakenly classified texts

We can see in Figure 1 that the accurately classtixts are classified with much higher
similarity then the mistaken ones so it looks passto compute some threshold under
which we can say the classification is not clear.

Relative distance— Here we rely on the intuition that when a docome classified
correctly, its cosine similarity to the right laragge is much higher than the similarity to
other languages. We can define a variaifiiset which will stand for the difference
between the cosine similarity of the fragment t® ¢losest language and the document's
average similarity to all considered languages.éviormally,

of fset = max Cosine(l, document) - Average, janzuage: Cosinel l,documCnt)
lelanpuages : ’

Figure 2 shows thaiffsetindeed is significantly larger when the classtfica is correct,
SO we can use it as the certainty threshold as amesee that for wrongly classified
documents the offset is always in the range of-0.0%5

Here we will not set the threshold as a functibthe length, and use the variance of the
similarity distances. For each document we can actenphe standard deviation
std(document)of the cosine distances from each language. Wé say that the
classification is certain ibffset>a*std.

18
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Figure 2: The average of the offset variable (tiffer@nce between the maximum
similarities to the average similarity) of corrgcnd mistakenly classified
documents.

2.1.2SMALL AND NOISY DOCUMENTS
Classifying OCR processed manuscripts have sevendjue challenges, not

encountered when handling traditional languagesilaation of documents. One of
these challenges is handling significant amounta$e characterizing OCR outputs.
Another challenge is the frequency of extremely Ibrtexts, some less than 50
characters long (maybe two sentences). The signiée of small documents
classification rises when handling the problem ofultdingual document
segmentation described further. The length of theuthents and the noise rates can
make some statistic measures less efficient duedistorted distributions or
insignificance of statistics on small samples.

Several methods (Kukich, 1992) have been proposeerfor correction using N-
grams, using transition probabilities — the probtads of a letter following another.
Here, we are not interested in error correction,ibthe adjustment of the classifying
procedure to handle noisy texts. For noise reptaten we introduce thé&$"
character which stands for an unrecognized charbgtthe OCR. We do not discuss
error recognition here and assume that errorseregnized and represented by the

"$" sign. A conservative OCR system can only outp@ratters which have high

19



probability of correctness and output the rest®sso all misidentification mistakes
can be reduced to this notion. There is also namagson that the word boundaries
will not be misidentified, so a "$" sign can be g¢woed instead of a space character.
Several methods are proposed
Ignoring unrecognized n-grams— here we do not account the n-gram containing the
"$" character in the cosine similarity measuresisTlequires no change from the
regular patterrsincethose n-grams do not appear in the language magevay.
Here we assume there is enough bigrams left inekieto successfully identify its
language with the remaining n-grams.
Remove unrecognized characters we can also remove the "$" fragment from the
text before starting any analysis. On one handpis natural to ignore all noise, but
on the other hand we lose the information thaten@ias indeed produced. Therefore
a$x' will transform toax' which may distort the n-gram distributions
Error correction — Given unknown character we can try correctingsihg trigrams.
When observing the $ signed surrounded by a charHcon its left and2 on its
right, we can look for the most common trigram atle language containingy in the
beginning and2 at the end. It looks natural to do it and enhante statistical
power of the n-gram distribution. On the other handoes not scale well for high
noise rate since there is no solution for two orermnsecutivé$” characters.
Averaging n-gram probabilities — When encountering "$" we can use averaging to
estimate the probability of the n-gram containihdror instance the probability of the
bigram $x" will be the average probability of all bigramsusing with &' in a certain
language. This can of course scale to higher ngramd integrates the noisy
information into the computation.
Replacing the '$'— We can try to replace the '$' by some other cbaravithout
relying on the language model. We do that by logkat the character before it,
noting it asl, and searching the given text for another appearahit. The character
appearing afterin the closest appearance to the '$' charactetbeithe one we will
choose to replace it with. This is a rather heurighd not statistic error correction,
20



relying that replacing an unknown bigram can bedjgted using similar bigrams
close to it in the text.

Top n-grams — when looking at noisy text we can say that meegght should be
given to the corpus statistics since it is err@efrMoreover, since text is short we
expect to see only a small portion of the n-gramthe text. Therefore we can look
and compute distributions only on the n most commegrams in the corpus,
assuming that they must appear in the text reggminise and length.

Higher or lower n-gram space— So far we used bigram which showed superior
performance. When error rate rises and text ledgips, the more distinctive n-gram
such as trigrams may produce higher success ratgh@® opposite, unigrams need

shorter text sample for robust statistics so ae econsidered.

2.2 Experiments and results

2.2.1TEST SETTINGS

The success of language classification can hedeihend on the properties of the
test set. For the task of classifying manuscripitere are several properties to be
considered:

Text length — manuscripts can be of different lengths, frorsnaall number of
sentences up to a whole page that contains mulgptagraphs. It is clear that the
variance of the distributions of smaller texts isiaim higher, so the probability of a
statistic model extracted from short text to diffesm the language statistic model is
higher. Therefore, we can expect lower accurace m@h shorter texts. For our

experiments we tested various text lengths to nredbe influence of this parameter.
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OCR error rate — Assuming that the classified text is a resultsome noisy
process, we expect that high rate of noise willoedthe classification success rate. This

parameter was also tested and we present how wesadaighly erroneous documents.

Language set- Even when languages share the same characténesetan still
significantly differ from one another. For exampiebrew and Judeo-Arabic are
completely different, with little chance that a Helw speaker will understand Judeo-
Arabic even a little. On the other hand, some laiggs can share the same character set
due to common origins, which will resemble in thghhsimilarity between them that can
make the classification task more difficult. Suech Blebrew and Aramaic that have a lot
of similar words or a word in one language thatame variant or descendant of a word
of the other language. Needless to say that asethef languages grows the classification

task becomes more difficult.

2.2.2TESTRESULTS

To test the distance function we begin by selec88@ documents, 100 of each
language and try to classify those using bigram wach of the mentioned distance
functions. For this purpose we use prepared tekts mo errors. Each document is 300

characters long.

Cosine KL Euclidian
Overall 0.94 0.81 0.94
Hebrew 0.93 0.78 0.94
Aramaic 0.89 0.72 0.89
Judeo-
Arabic 1 0.94 1

22



Table 1: Classification accuarcy of distancecfion

From the results two facts arise clearly: The a@sand Euclidean functions have
higher accuracy then KL and Judeo-Arabic languagenuch easier to spot then
Hebrew and Aramaic.

300 characters are about four sentences which psettly short text. For similar

languages like Hebrew and Aramaic it may be toatsitoget a good classification.
We also want to try out trigrams in order to gaettér statistics. To test this, we
classified texts of various lengths, using unigralmgrams and trigrams. We tried it
only on Hebrew and Aramaic since we saw that Juttabic is distinguishable

pretty easily.

1 ,%,\_
0.9 //
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0.8 &

// bigram
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Figure 3: Classification accuracy of different ragns

From figure 3 we can see that generally bigramgtaedbest method on all lengths.
For texts longer than 1000 characters the perfocmas perfect. On short texts
trigrams have low performance which rises as thedege grows, but does not reach

the bigram performance even on long texts. Perbap®ally long texts, the statistic
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power of trigrams can be more significant but omeaized texts it is inferior.

Unigram have poorer performance then bigrams ewdh@shortest texts.

2.2.3"U NKNOWN" CLASSIFICATION TESTS

By allowing classification to return an "unknowr@sult, we obviously reduce the
error rate. On the other hand, since the "unknowassification is not a correct
classification, it also reduces the success raieestablish a fair measure, we can score a
successful classification as 1, an unknown clasgibn by 0 and wrong classification by
-1. It is a "neutral” score since right and wrongssifications weigh the same. For error
sensitive classification the weight of the erroowgld increase.

For absolute threshold we estimated the threshwoidtion as

threshold = a4 b+Inlc* length+d) where

a = 5.31E-02;

b = 1.29E-01;

c = 8.27E-01;

d=-1.18E+01;

Increasinga will make classification more error sensitive (Ewverror rate and lower
success rate) and decreasing it will give highecasss rate (and error rate).

For relative threshold we s¢hreshold = a=std wherea=0.8.As a grows, the
classification is more error sensitive (lower emate), and aa reduces the success rate

grows.
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Figure 4: The success rate, the error rate andléissification score of every method
of"unknown" classification

Naturally, "unknown" classification methods reduxh the error rate and success rate.

We can see that the relative distance method isreuwpto the absolute distance, with

significantly lower error rates on almost everyggmand equal success rate. We can also

notice that for neutral classification score, tlegular classification is superior to all

methods. Only when we measure the classificatioth vrror sensitive score, the

"unknown" classification methods become relevant.

2.2.4NOISY TEXTS
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A test to measure the performance of all noise atoln methods was done on several
(but small) document lengths. The error rate wasukited using the '$' character, that

randomly replaced text characters according to semue rate.
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replacingreslut Noise Rate C 0.15 0.3 0.45 0.6

Figure 5: The performance of all noise reductionhmds on 40 character length
documents

Figure 6: The performance of all noise reductiorthmés on 100 character length
documents

From Figures 5 and 6 we can see that usually,igusiring the unrecognized character,
relying on the statistics of the recognized texths straight forward and best result.
Trigrams perform well only on short noise free $xdnd reducing the bigram to the top
100 performs good also, usually not very differBotm the ignoring methods. Top 20
bigrams performs well only on very noisy texts as @an expect, presenting poorer
performance on other cases and looks suitable wilgn the amount of noise is
extremely high. Error correction methods do nofgren well, while replacing '$' with a
character of neighboring bigram which looks likeseful feature in high noise rates.
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CHAPTER 3

SPLITTING BI-LINGUAL TEXTS

In the previous chapter we showed methods for lagglclassification of manuscripts.
The methods work under the assumption that eaclusgdpt is monolingual, and their
behavior on multilingual texts is unexpected. Aatetl before, Genizah manuscripts
contain many mixed texts which cannot be stricthssified to some language. When we
look at texts of Jewish biblical philosophy or imteetation, we will usually find Aramaic
texts with a lot of quotations in Hebrew. Classifyisuch texts to one language is rather
useless so instead of classification we are intedegn a more general problem of

splitting the text into monolingual fragments, difigng each fragment to its language.

3.1 Background

The problem of fragmenting multilingual texts to metingual fragments was not
addressed much, although it is a natural genetalizaf the language classification
problem (Hughes 2006). Several related methods beamuseful for this type of
problems. The notion of structured learning is gle@eralization of the classification
task (Daume and Marcu, 2005) to extend the tametomplex structures such as
sequences or trees. Theoretical general methodgad®v models or support vector
machines for such predictions, usually using massdatasets for learning.
Segmentation problem, as a simple case of struttdearning that results
classification sequences can be addressed usiag Weoy general methods.

More specific methods deal with segmentation of,texch as automatic paragraph
detection. All such methods use two modules, oassdication model and another
segment boundary searching model. The most poppfaoach is the sliding window
technique that looks for the most rapid changelassification scores for detecting

boundaries. The general scheme of the designedtalgoshould not be affected by
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noise unlike some sliding window approaches whipplya classification on very
short windows, a technique shown as not efficiemt €lassification of noisy

documents.

3.2 Algorithm Outline

For the splitting task we assume that no dictionanavailable and only n-gram
statistics of each language is known. For wantdalgerithm to work even if the
language shifts every few sentences so we do soivas anything on the length of
each fragment (we of course cannot count severadsvas a language shift). In the
general case of the algorithm there is also nonaggan that the sentences in the text
are marked, so it can be a one long sentence ashelalgorithm has 4 major steps
1. Split the text to fragments

2. Calculate characteristics for each fragment

3. Classify each fragment
4

. Refine classification result and output final résul

3.2.1SPLITTING THE TEXT
As stated, we do not assume the documents ardrgplisentences or paragraphs. So

the splitting is done in the naive way of segmeanthe text into fixed size fragments.
Obviously, language cannot shift in the middle ofward so we do perform
adjustment of the fragments sizes to fall betweends: If sentences are marked in
the text and we assume that language cannot shifiei middle of the sentence, then
the adjustment described is done for sentence uatyu

The selection of the fragment size should dependhenlanguage shift frequency.
Nonetheless, each fragment is classified usingsstal properties so it has to be long
enough to have some statistic significance. Onatther hand, if it is too long the
language transition will be spotted less accuratahd if a fragment contains two
language shifts the algorithm will not be able tassify the inner fragment (for
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example if a fragment starts with Hebrew, shiftAtamaic and end in Hebrew, the
algorithm can classify it as Aramaic or Hebrew,spiit it to two languages in the
post-processing but cannot spot all three fragmeMsreover, the post-processing
phase is computationally more expensive, andatspiexity grows proportionally to

the fragment length so we cannot choose a longrfeag size.

3.2.2FEATURE EXTRACTION
The core of the algorithm is classification of fregments produced by the first step

of the algorithm. Classification problems are uusdduced to vector classification,

so there has to be a process of representing eagimént as a vector of features.
Naturally, the selection of features is criticat Buccessful classification, regardless
of the classification algorithm.

N-gram distance— The first and obvious feature is the classiforabf the fragment
using the methods described in chapter 2. Howetls, fragments are
significantly smaller then the texts that were sifisd in the previous chapter so
we can expect the accuracy be lower. The featarélsis case will be the cosine
distance from each language model rather than glesfieature with the result
language. This is rather natural since we wantrésgrve the distances from each
language model in order to combine it with otheatdiees further on. For each
fragmentf and languagéwe can comput®istance, = Dist(l, f} whereDist(l f)

represents the cosine distance of the bigram lligions ofl andf

Neighboring fragments language- We expect that languages in a document are not
shifting too frequently. It is a reasonable assuomptsince usually paragraphs
tend to be monolingual and at least several seesemca row are in the same
language to present some idea. Therefore, if wesare that a fragment is in
some language, there is a high chance that thefragxhent will be in the same

language as well. One way to express such dependeiy post-processing the
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results to reduce noise. Other way is by combirnhrgy classification results of
neighboring fragments as features in the classificaof the fragment. Of course,
not only neighboring fragments can be considerad,al fragments under some
distance from the fragment can help in classifaatiFor example if we have a
classification results of HHHAHHH (where H stands Hebrew fragment and A
for Aramaic fragment), it looks possible that thesAnoise and should be H. On
the other hand, if the result is HAHAHAH, therenis intuition to turn the middle

A to H. Some parameter should be estimated to &ehtteshold for the distance
between fragments under which they will be congdeneighbors. We denote
Neighbor(f,i) = if i is positive then the i'th fragent after f. If i is negative the i'th
fragment before f. If i=0 Neighbor(f,i) = f. So felach fragment and languagé

we can ComputhEghbGTﬂlSth'l' = DESI{L NElghbGTUE, l}}

Whole document language another feature to be considered is the cosisiarie
of the whole document from each language models Tdature tends to smooth
and reduce noise from the classification outputteNthat for a monolingual
document the algorithm is expected to output alsirftagment (the whole
document) classified to the right language. Soeach languagé we calculate

DocumentDist; = Dist(l, text)

Clustering — a major drawback of the features presented st fdre fact that they
resemble statistic similarity between language rsodend very short text
fragments. To increase classification accuracyweald like to classify longer
texts. In order to do so we can cluster similagifnents together and then classify
the whole cluster as a single unit. It will obvibude longer than a single
fragment, so the classification will be more acteiraut there is no guarantee that
the clustered fragments will be actually monolingua
The clustering is done using complete linkagednarical clustering. The idea is

to perform iterative process where each iteratieruwify the two closest clusters.
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Initially, all fragments are clusters containinglyoone fragment. Every iteration
we unify the two closest clusters, where completkage stands for the metric
used for calculating distance between two clustdiise distance between

clustering is the maximal distance between any etgmin the two clusters. More

formally Dist(C1.C2) = Maxicct raeca(Dist(fL.f2)) where c1eC1  stands for
fragmentfl belong to cluste€1. We end this iterative process when the minimal
distance between two clusters rises above somghiblceT (which in turn means
there are two fragments that the distance betwssmn exceeds the threshold). In
the end of the process we can compute the distaateesen each cluster and each
language model. For a fragmdntve denote the cluster that contafres Clus(f)

and for each fragmentf and languagel we can calculate features

Clus; = Dist{L, Clus(f)), The thresholdT for stopping the clustering process
represents the threshold between gaining biggestenrtsl which can be better
classified on one hand and risking to get clustgngh are not monolingual on

the other hand and is established empirically,

Since the point of clustering is to get longert tex classification, then as bigger
the cluster gets the more positive we are in @ssification. Therefore the size of
the cluster is another feature we want to considerorder to give more

significance to theflus; features for longer clusters. So for each fragniemé

denoteClusSize = IClus(f)l the number of fragments clustered to the sameeclus

asf.

3.2.3CLASSIFICATION PHASE
After the features have been extracted, the cleas8dn step is rather straight

forward. We can either use some known supervisathilegy method such as to learn
the problem on a test set and produce a classifisve can try establishing some
manual scoring formula using the features and ifjaby the language getting the

highest score.
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3.2.4P0OS- PROCESSING
We now want to refine the fragment splitting praoed We do it the following way:

We look at the results of the splitting procedund gecognize all language shifts. For
each shift we try to find the position where theftstakes place (in words
granularity). We unify the two fragments and thento re-split the fragment in N
points. For every such point we look at cosineatise of the words before the point
from the language the first fragment was classife@nd the cosine distance of the
words after the point to the language the secoagnient was classified to. For
example suppose the fragmekit....Anwas classified as Hebrew and the fragment
B1....Bmwhich appeared right after it in the text was sifésd as Aramaic. We look
at the textAl...An,B1...Bmand try to split it in N points (say N =3). So g to split

it to F1=A1...A(n+m)/3andto F2=A(n+m)/3...Bm(suppose ((n+m)/3)<n). We look
at cosine distance il to Hebrew andF2 to Aramaic since those were the languages
the fragments were originally classified to. There wry to look onFl1 =
Al...A(2*(n+m)/3)and F2 = A(2*(n+m)/3)...Bmand so on. We take the split point
with the lowest cosine distance multiplicative béttwo values. The N value is a
tradeoff between accuracy and computation effigiehghen N is higher we check

more transition points, but for large fragmentsaih be computationally expensive.

3.3 Noise Reduction

As for language classification, the segmentatigo@thm can be extended to handle
noisy documents. As the splitting and shift rectigniphases are not expected to be
noise sensitive, the classification phase of eagment is the stage to handle noise.
We test the segmentation success rate on all norsection methods presented in the

noise handling section for classification.
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3.4 Experiments and results

3.4.1TEST SETTINGS
We want to test the algorithm with a well definemrgmeters and evaluation factors.

For this purpose we will create artificially mixethcuments, containing fragments
from two different languages (we can do it usingoi¢ev and Aramaic which are

difficult to distinguish, Hebrew and Judeo-Arabibeve classification is easy and the
fragmentation is the main challenge or do it oré¢hlanguages). The fragments will
be produced using a procedure that accepts twangdess: The desired document

lengthd and the average fragment lendth where fragment is a continuous text

block of only one language. Obvioudls = . The procedure will iteratively
randomize a number in the ranie20,l+20] and will take a substring in this size
from a corpus of one language. The substring weilatjusted to contain whole words
only. It will repeat this on all corpora of all @hlanguages and then will restart with
the first language until the whole text will reatie size ofd.

Obviouslyl andd are of significance. For a very smhllit will be very difficult to
fragment the document exactly since the text bloekk not be long enough for

statistic tests. As fod, it is clear that the average number of fragmemégle the
d

n
documentis  =. Asngrows larger it is more difficult for the splitgralgorithm to
be right in all fragments and sincegrows withd we will expect to see a higher
absolute error rate.

3.4.2SUCCESSMEASURES
Obviously the splitting procedure will not be petfeand we cannot expect it to

precisely split the document to the original fragise Given that, we want to
establish some measures for the quality of thetisgjiresult. We would like the
measure to produce some kind of score to the dtgoroutput, using which we can
indicate whether a certain feature or parametehénalgorithm improves it or not.

However, the result quality is not well defined cgnit is not clear what is more
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important: detecting the fragment's boundaries rately, classifying each fragment
correctly or even split the document to the exarhiber of fragments. For example,
given a long document in Hebrew with a small fragtme Aramaic, is it better to

return that it actually is a long document in Hebreith Aramaic fragment but

misidentify the fragment's location or rather reuag the Aramaic fragment
perfectly but classify it as Judeo-Arabic.

We established three evaluation measures, usinghwhie test the algorithm

accuracy:

Correct word percentage — the most intuitive measure is simply measuring t
percentage of words classified correctly. Since"#temic" block of the text is words
(or sentences in some cases described furtherghvene certainly monolingual, this
measure will resemble the algorithm accuracy pretypd for most cases. It is
however not enough, since in some cases it doegdflect the quality of the

splitting. Assume a long Hebrew document with salvehort sentences in Aramaic.
If the Hebrew is 95% of the text, a result thasslfes the whole text as Hebrew will
get 95% but it is actually pretty useless resultl ave may prefer a result that
identifies the Aramaic fragments but errors on meds (say classifies the two

Hebrew sentences before and after the Aramaicrsantes Aramaic also).

Fragment count ratio (FCR) — The measure estimates the algorithm sehsito
language shifts. It counts the difference betwdenreal fragments number to the

fragments number returned by the algorithm. To radiza it is divided by the

number of real fragments. ObviouER € [-Z..1]. It will indeed resemble the
problem previously described, since if the entigcument will be classified as
Hebrew the FCR score will be very low as the acfuajments number is much
higher than one.
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Splitting edit-distance (ED) — Counting the fragments number (FCR) will allow
evaluating the sensitivity of the splitting in tladgorithm. However it does not
resemble the quality of the classification stagépou Going back to the same
example, the FCR will return the same result e¥ehe algorithm will recognize the
Aramaic fragment as Judeo-Arabic. In order to estauf the algorithm classifies
right, we will define the following measure: If ia&bel each language in the language
set by 1...n. such that each document can be repeelsky a vector representing the
languages of its fragments. The ED will be the-diitance between the vectors of
the actual fragment decomposition to the vectodpeed by the split of the algorithm
(this measure is not normalized so it supposeddw gvith d/I) .For instance, given a
document which contains Hebrew text, then AramhantHebrew and the Judeo-
Arabic will be presented aBlAHJ. If the algorithm misidentified the Aramaic
fragment it will returnHJ so the ED will be the edit distance betwéthHJ andHJ
which is 2. If it will misclassify the Judeo-Arabas Aramaic and produ¢¢AHA the
ED will be 1. We can notice that if the languagé santains only two languages,
there is no point to the ED measure since it velurn the absolute value of the FCR
measure. Due to the fact that each character irclgssification language vector is
different from the character following it (if theye the same they would be unified to
the same character) the edit distance on binarpres just the length difference up
to +1.

Therefore we will only use this measure when thglege set contains more than

two languages.

3.4.3NAIVE SPLITTING
To get a reference on each feature of the algontlenwill run a naive algorithm on

the documents. The basic algorithm will simply spie document, classify each
fragment in the way documents are classified artguttthe result. We want to test

how d and | affect each classification parametarguthis naive scheme.
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d I d/l Correct words FCR ED
500 50 10.00 0.729 1.24 1.36
500 100 5.00 0.827 -0.48 0.56
500 150 3.33 0.847 -1.33 1.33
500 200 2.50 0.869 -1.77 1.77
500 250 2.00 0.902 1.45 1.45
1000 50 20.00 0.729 -2.64 2.68
1000 100 10.00 0.824 -0.62 0.9
1000 150 6.67 0.856 -1.52 1.56
1000 200 5.00 0.85 -2.75 2.79
1000 250 4.00 0.88 -2.61 2.61
1500 50 30.00 0.718 4.4 4.48
1500 100 15.00 0.813 -1.1 1.42
1500 150 10.00 0.841 -2.21 2.33
1500 200 7.50 0.859 -3.67 3.69
1500 250 6.00 0.882 -3.46 3.5
2000 50 40.00 0.716 5.93 5.95
2000 100 20.00 0.818 -0.82 1.54
2000 150 13.33 0.838 -3.28 3.36
2000 200 10.00 0.86 -4.47 4.49
2000 250 8.00 0.874 -4.63 4.63

Table 2: The splitting results of artificially midetexts from

three languages. The and| parameters are the

length of

the document

and

the fragment

respectively, andd/l is the average number of
fragments in a document. For eadhand| we
calculated the average evaluation measures.

From table 2 we can see how the measures behaverions document and fragment

lengths. First of all, it is easy to see that gsows, the correct word percentage grow

as well regardless of document length. This isamthtuitive since longer fragments

are easier to recognize and classify. The FCRwsoably strongly dependant on the

number of fragments, and if the number of fragmentsdocument grows it is harder

to accurately estimate it. We can notice that al¢fio the algorithm splits the

document to fragment of 40 characters, if the ayeefeagment length is 50 characters
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the algorithm underestimates the number of fragméslits it to fewer fragments
than needed). When the average fragment lengttD@sahd more the algorithm
overestimates the number of fragments. The lastrgb8on is that ED is very close
to the FCR, probably due to low rate of misclasation, so further test will consider

only the correct words percentage and the fragmaumt ratio.

3.4.AFEATURE EVALUATION

3.4.4.1 Neighboring fragments

The first enhancement to consider is the way fragimelassification is affected
by neighboring fragments. To do that we begin bgc&ing if adding the cosine distance
of the closest fragments will enhance the algorithperformance. We

definesmmfﬂ =Distil,f1+ a= (Ne:’ ghborDist; (1} + Nei ghhﬂrﬂ:’sti_f{—l}) For the

test we seb=0.4

L 14
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Figure 7: The word percentage of the algorithm withsidering neighbors and without
them as a function of | (d was chosen to 1500).

Figure 8: The fragment count ratio of the algoritimth considering neighbors and
without them as a function of | (d was chosen t6Q)5

We can see that on long fragment lengths the nerghdp fragments improve
classification, while on shorter ones classificatwithout the neighbors was superior. It
is not surprising that by using neighbors the 8piit procedure tends to split the text to
longer fragments, which has good effect only igfreents actually are longer. We can
also see from Fig 8 that the FCR is now positivh\Ww100 which means the algorithm
underestimates the number of fragment even whem feagment is 100 characters long.
By further experiments we can see thatalparameter is not significant, and we fix it on
0.3.

As expected, looking at neighboring fragment caprowe results in most cases.
The next question to be asked is if farther neighlman improve it also. We try the
following ; scoring function:

a

Scoreg,; = Dist(L. f) + Z ( k)(N eighborDist; ((k1}+ NeighborDist, {—k})
k=1 . N stands

Word Percentage

EN=1 0.9
N=2 0.8
- 0.7

BN=3 L 06
EN=4 L 05

250 200 150 100 50

for the longest distance of neighbors to considehé score. Thais set to 0.3.
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Figure 9: the word percentage of the classificatordifferent values of N

We can see that increasing N does not have a isigmifimpact on the algorithm
performance, and on shorter fragment lengths pedoce drops with N. We conclude
that there is no advantage at looking on far neaghland looking on the closest

fragments is enough.

3.4.4.2 Clustering

Next thing we test is how the clustering methodcdbsd above can enhance the
algorithm. As stated before, the clustering refifragment's classification by classifying
similar fragments in the same document togetherchvican allow more accurate
classification since texts are longer. There akers¢ parameters to consider: since the
clustering method is hierarchical, there needstsdme similarity score under which we
stop clustering. We set this similarity to 0.55,am&g two fragments which have lower

similarity then 0.55 cannot be clustered together.
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Table 3: Fragments couples and their cosine gittyila

To get some perspective Table 3 demonstrates fragmmuples with their

cosine similarities. We can see that fragments wikr 0.6 similarity usually have
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common words (even long ones), a fact that makes#gonable to assume they are in the
same language. When similarity drops, the fragmkas more random and we do not

want to cluster them together for classification.
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neighbours

Correct Words
Percentage

M clustering (with
neighours)

W clustering (no neighbours) 250 200 150 100 50
Document Length

Figure 10: The word percentage rate of the algari¥ith and withuot a clustering phase.

As seen in Figure 10 the clustering phase doeswdify results dramatically, regarding
the other features of the algorithm. It can be a&ixgld by the fact that clustered
fragments were already correctly classified whére mistaken fragments that needed

their classification corrected were not clusteredduse of their anomaly.

3.4.4.2 Post-Processing

Another thing we test is the post-processing ofdpktting results to refine the
initial fragment choice. We try to move the traiwitpoint from the original position to a
more accurate position using the technique dest@beve. We note it cannot affect the
FCR measure since we only move the transition powithout changing the
classification. As shown in Figure 4.5 it does ioy® the performance for every value of

I
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Figure 11: The correct words percentage of therdtgo with and without post-
processing (the N value was set to N=5) as a fonaif |

3.4.5.SENTENCE ACCURACY

To test the success rate on sentences, we do 1iine ga@cedure as for words, but the
classification and mixed fragment creation worksémtence granularity. For simplicity,
we mark 8 consecutive words of the same languagesasitence and mark the end of it
by '.". In the artificial creation phase, each fragmenttaims several language of each
language (instead of creating fragments by the muraobcharacters, we now create it by
number of sentences). In the splitting phase wealasplit it at arbitrary word, since it is
certain that each sentence is monolingual. Thezefge skip the refinement stage at the
end of the algorithm and test how good is the swmterate classification (what
percentage of the sentences were recognized dgjreahd the improvement of the
algorithm using neighboring fragment data. We dernbiat for short fragment length
documents each fragment contains only one senteadbe most we can expect on those
documents is the accuracy of language classificatio sentence length (about 30
characters) texts. The results are in table 4 aadcan see that for low values the
success rate is even lower than the word percentsigee it uses only language

classification of sentences (the neighboring datly decreases accuracy in this case
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since neighbors are surely have different languadg&r longer fragments the

classification rises above the words percentage

Correct Correct sentence Correct sentence
I words percentage (no percentage (with
percentage neighbors) neighbors)

50 0.72 0.68 0.59
100 0.81 0.84 0.81
150 0.84 0.87 0.88
200 0.86 0.87 0.92
250 0.88 0.88 0.93

Table 4: The percentage of the sentences coriieethtified by the algorithm, with and
without neighboring fragments data, compared tg#reentage of correct
words percentage.

3.4.6.NOISE REDUCTION

To test the noise reduction we artificially noike text by randomly replace some letters
with the "$" character. We denote the desired noise raté amd for each letter
independently replace it with the "$" charactermptobabilityP. Since the replacement
of each character of the text is mutually indepatdee can expect normal distribution
of the error positions in the text and the corectphase described above does not
assume anything about the error creation procelss. efror creation does not assign
different probabilities for different charactersthre text unlike natural OCR systems or

other noisy processing.
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Not surprisingly Figure 12 illustrates that the @wexy reduces as the error rate rises.
However, it does not significantly drop even forywdaigh error rate, and obviously we
cannot expect the error reducing process will perfbetter then the algorithm performs

on errorless text.
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Figure 13: The performance of the correction meshadabve as for each error rate.

Figure 13 illustrates the performance of each nekthidooks like looking at most
common n-grams does not help and so is corredti@gimrecognized character. Ignoring
the unrecognized character, using either bigramisignams, or estimating the missing

unrecognized bigram probability show the best ametkty similar results.
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4.3.5
CHAPTER 4

CORPUS SEARCHING ERROR CORRECTION

The identification of the language opens possiedifor creating simple catalogues and
enhances search options over digitalized documéstdor text produced by an OCR
process, it opens the option of post-process thietteenhance OCR accuracy. This is
especially important for extremely noisy OCR praess where the produced text cannot
be used without further improvement.

A common technique in OCR post-processing is apprate string matching. We
assume the text is a part of some big known comgous the problem is reduced to finding
the correct sub-text in the corpus that correspoimdshe processed document. In
processing Hebrew manuscripts, it highly likelyttiide manuscript is a part of some
known book and searching it can reveal the text tha OCR could not accurately
recognize. Assuming we identified the language gigite techniques from the previous
chapters, we can use those language models alsoptove the OCR result. This is
relevant for extremely noisy texts, for which séamg for approximation in the corpus

may not provide with good results.

4.1 Background

String searching is a well studied problem in cotapscience with many established
algorithms and strong theoretical background. Tagidoproblem of finding a string
in a long text has well known solutions such as tkfdorris-Pratt (KMP) and
Rabin-Karp algorithms, which are linear in the tsizie. The problem of approximate
string matching is a generalization of this problenhere the goal is to find a
substring of the text that best matches some s¢attérn, where matches are ranked

using some distance functions. The approximategstmatching has applications in
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variety of fields in computer science especiallynpotational biology, information
retrieval, spell checking and more.

4.1.1EDIT-DISTANCE

To deal with approximate matching, we first needléfine what an approximate
match is. This of course depends on the applicatiirt one of the most popular
similarity measures of string is Edit-Distance,oalsiown as Levenstein distance. The
edit distance between two strings is defined byrteimal number of edit operations
needed to be performed on one string for it to #amatch the other. The edit
operations allowed in the basic form of edit dist@anare insertion, deletion and
substitution of letters. For example, given thedgditrain” and “ruins” we can perform 3
edit operations: deleting the ‘t’ letter (gettirayrn), substitution of ‘a’ by ‘u’ (getting ruin)
and inserting the ‘s’ character at the end to g&ns”. Hence, the edit distance is 3.

Edit distance is highly suitable for OCR correctjpmrposes, since the allowed
edit operations are pretty consistent with thersram OCR engine may perform. It is
frequent for an OCR to skip a character or to racsome irrelevant symbol as a letter
(insertion and deletion operations), and of cowsefuse one character with another
(substitution). We can use edit distance to appnaie the probability the OCR engine
will produce one string from the other, in the setisat the lower the edit distance is , the
higher the probability for the OCR to produce omeng as an output on the second
string. A generalized version of the edit distapoeblem, assigns different weights for
insertion of each character, deletion of each atarand substitution of each character
with each other character. This can match the reiffieprobabilities of mistakes made by
the OCR engine (it is more likely for the OCR tglexe two characters that have
geometric similarity or to insert a character wsiimple geometric shape). Other string

distance functions do not reflect the nature of O@Rjines. The popular Hamming
46



distance allows only substitution of letters, biveg infinite distance to two strings with
different lengths which will assign zero probalilior an OCR to miscalculate the length
of its input (which is way above zero obviously)hel generalization of Levenstein
distance, Damerau-Levenstein is popular in spetection because of the additional edit
operation of substitution of two letters. As oppdsehuman typing, which have high
probability of confusing the characters order, a@ROis an automatic procedure that
scans the text linearly, so this function doesswt our requirements also. Other string
distance function popular in natural language pgeicgy usually use phonetic or semantic
word properties while OCR usually uses geometrperties of the characters.

The edit distance between two strings is usualljnmated using a dynamic
programming procedure. The computation complext®(n*m) wheren andm are the

lengths of the two strings.
4.1.2APPROXIMATE STRING MATCHING METHODS

There are several approaches to the approximaitg stratching problem. Some
of them are mainly theoretical in nature, where tactical ones are dynamic
programming, filtering and indexing.

Dynamic programming techniques are a search geérmtiah of the distance
computation method, by trying to compute distamoenfevery possible starting point in
the text. The run time of those methods is usualhge to O(n*m) where n is the text
length and m is the pattern length. Main drawbakckhose methods is the large space
requirements due to the dynamic programming matmee=ded to be managed. For large
corpora this can make it inapplicable since theeesaarches of patterns of thousands of

characters in texts of tens of millions of chares:te

47



Filtering methods use heuristics to eliminate irefein the text that cannot be the
best solution. There is usually some fast scanafrtge text which will make the search
phase more efficient. The search phase usually snake of dynamic programming
techniques, so worst case scenarios will be sintibarthe dynamic programming
complexity. Those methods are much more conveffoerur purpose.

Indexing methods preprocess the text, which in tenmances the matching
procedure. Those methods are suitable for applicatihat perform multiple searches on
the same text. The indexing is usually computatfigrexpensive and has high memory

consumption and the search algorithms are comple>xdéficult to modify.

4.2 Error rate estimation

Applying string matching techniques for correctimi OCR process has unique
properties, due to the unknown accuracy of the @@RRess. Although edit-distance is
suitable for estimating the probability of a stringing produced by the OCR, there is still
no guarantee that the closest substring in a texerms of edit distance is the actual
string. In other words we want to estimate how ceffit will application of string

matching techniques to OCR correction problem ahdtWCR accuracy is needed for it

to be efficient.

4.2.1SINGLE LETTER ALIGNMENT

The first thing we test is the application of sfyimatching techniques, under the
assumption the OCR can accurately recognize ongy araracter of the alphabet. We
first try exact matching, meaning we assume the @€iRgnizes the letter perfectly. For
this purpose we choose an arbitrary string in &xé tmask it in the sense we leave only

one letter in the string and turn all other chagexto the ‘$’ sign, and search it back in
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the text. We denote sAlligm(n) the average number of alignments for substrings of

length n over 500 random strings which was masketbhtain only the letter I. The use

Allign{n)
1000000

//; 100000
- 10000

' / 1000
T / 100
10

[TITTITTTT 1

N 182 162 142 122 102 82 62 42 22

the bible, which is 1505034 characters long, astéx¢ to search in. We expect the

number of alignments to rise as the text grows

Figure 14: The number of possible matches for gtniasked by three different letters, as
a function of the string length.

As shown in Figure 5.1, we can see that for fregletter (such as’*which has 10%
frequency), the search yields a single match angsrlonger than 110 characters. For
rare characters, even on 200 character stringgillithas over 1000 correct matching,
making the search irrelevant, so if OCR recognaeyg rare characters we demand much
longer documents.

4.2.1.1 Single letter with errors
After approaching the straight forward approackexdct matching, we will try to extend

it to inexact substrings. We still assume the amlity of only one letter. Suppose the
substring is a copy of some fragment of the origiest, while errors can be taken place

in the copying process. We can look at a probgbihaitrix of copy errors. Suppose we
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have a probability oP= to get a lettef in the copy even when the original text contained

something else. It means that we have a probalbifionly 1 ~ P= to get non character
(denote it by$) in the copy when there appear®ih the original text. Symmetrically,

we define by P= the probability of getting in the copy when the original text contained

| and it means we only hade™ P= probability to copy the lettdrcorrectly.

For the test we s&1=0 andP2=0.05 This means that the OCR does not produce “false
positives” and identify where it did not appear. It does have a 0.05 gnibato miss a
charactel and produce something else. For example givenra Straxixrax” which
contains 4 appearances of the charactethe probability of getting $9$$7$$7$$7$”
(exactly correct OCR) i8:95* | since the probability of correct recognitiontlo letter is
0.95. The probability for§sss7s$7$$7s” is 0.95% +0.05 (3 correct identifications and one
mistake). This can be the nature of a very consigesreOCR, that identifies some
character only when there is very high probabilitis actually it and therefore does not
produce false positives.

The test we produce is selecting an arbitrary gtfi@ave only a character | in the string,
while in probability P2 we replace the appearancesldb $. Then the new patter is
searched in the text and the match with the higpesibability (as defined above) is
returned. We are interested when the returned miatcictually the string that was
selected and masked. We use the charaetasl which is an average letter with 0.05%

percent appearance.

Pattern length Percentage of correct Average rank of original
matches string
500 1 1
350 1 1
250 0.995 1.025
200 1 1
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160 0.985 1.015
120 0.945 14.385
100 0.86 21.61
80 0.675 514.93
60 0.375 1760.85

Table 5: The percentage of correct matches of éfteqms with errors searched in the
bible. The second rows shows the average rank¢iogpility terms) of the
correct string

As shown in table 5 for fragments of 200 characterd longer, there is high probability

for the best match to actually be the correct fragimFor fragments longer than 100 the
results are reasonable, below that results are poaxe cannot expect string matching to
show good performance. When the error rate ratsesuticcess rate drops as shown in

figure 15. The performance is reasonable for eatas below 25%.
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Figure 15: The percentage of correct matches opdtierns with errors searched in the
bible as a function of the OCR error rate. Thequatt are 200 characters
long

4.2.2MULTI LETTER ALIGNMENT

When scaling to several letters, we obviously ekfee searching success rate to
increase. It is obvious due to the higher rateeabgnized characters but also due the
veracity of symbols needed to be matched. FigurellG$trates the success rate for
matching patterns containing various amounts ofedéht letters, and we can see

accuracy increases with the increase with numbéstiafrs.
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Figure 16: The percentage of a single match ratea pattern in for various available
letter numbers as a function of fragment length.

4.3 Proposed Algorithm

We propose an algorithm for post-process of OCRiltesy approximately
searching a corpus of text. The algorithm has @l déth relatively large patterns and
corpora, and the fact that the pattern is extrenmeligy, so the search result may be

considerably different from the pattern

4.3.1THE INPUT

The corpus is a big text (several millions of cleéees denoted by T. The OCR
results are given by the following: for each ch&ernin the OCR’ed text, denote it By
we get a set of charactefst ~C=x and a set of probabilitieB{Ci.1 )P Cix. ) which
stand for the p;obability that the character | fué pattern (the scanned text)Ge

P(C-,)
Notice that thei=1 do not necessary add to 1, since some of the bildles are

neglected. For most characters only one ot is given.

We assume that the accuracy of the OCR is prewty Wwhich means that only
about half of the top scored letters produced leyQICR are correct. The probabilities of
each character are not high (most of them belownbish is just a good guess), and in
addition insertions and deletions of characters a@asur frequently. On the other hand,
the pattern is assumed to be quite long so we sarthat fact to make more accurate

search.
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4.3.2THE ALGORITHM

The proposed algorithm is actually a filter algomt where the filtering is
heuristic, and uses substring of the pattern. €hgth of the corpus and fragment makes
it very difficult to run a classic dynamic progranmy algorithm. The fact that the input
is so noisy will make most of the filter algorithmefficient.

The algorithm proposed follows the following scheme
1. Clear the corpus and the pattern from charactetsatie poorly recognized
2. lteratively choose a substring of the pattern axatch it in the corpus

3. Combine the results to the one best result

The first stage handles the cleaning of the paftem the noisy characters. We estimate
the probability of each character as the averagéhefprobabilities attached to the
character at all its appearances. More formally,
P() = Average,i P(C,(i.K))|P(Ci(i,k)) > 0 and C4(i.k) =1 | |f the OCR engine
proposed the character | as an option for thepldkbe of the pattern, we consider it in the
average of the probabilities of I. The estimatigh B an approximation for how accurate
the engine handles the character I. The estimasi@ combination for the OCR recall
and precision on the character. After the estimatioaccuracies for all character we pick
a threshold under which all letters with lower aexy will be neglected. The threshold
should be estimated empirically and depends oraticaracy of the OCR. As shown in
the previous section, even one character with redde error rate can be enough for
searching a fragment of even medium length. Thesettwe threshold should be set high
enough for the extra recognized characters willease rather than decrease the success
of the search. All characters below the threshoédreplaced by an "unknown" character

both in the pattern and the corpus.
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The second step is iterative search. In each iberaive select a substring of the pattern
and search it in the corpus. The length of the tsmigsshould be the shortest possible,
such that using the characters chosen in stepe kehrch is expected to return one result
only. In other words, we would like to search a-paltern long enough so the search will
return it's match (or matches) in the corpus witghhprobability. When searching, we
search using the dynamic programming techniqueinaisg the sub-pattern is relatively
short for efficient search. The result of each geds an interval [a..b] where a and b are
the starting and ending indexes of the match indbmpus. We define the following
variables:

I- the sub-pattern length- pattern length

r — the index of the sub-pattern in the pattern

a,b — the indexes in the corpus that define the matthe sub-pattern

Insert ratio - a parameter estimating the frequency of insentiistakes made by

the OCR engine.

From a, b we define an interval [il..i2] which wébktimate the position of the whole
pattern in the string. Since the sub-pattern imdexes [a..b] we naturally would expect
to find the whole pattern at indexes [a-r...b+(L-{i};| by extending the match of the
interval for by the distance of the sub-pattermfahe pattern boundaries. Since we
expect an amount of insertion mistakes we exteng fimterval to [a-
(1+InsertRatiojr...b+(1+InsertRatig(L-(r+l))] to estimate the alignment of the patter
with the mistakes. The estimated interval is tlseilteof each search iteration.

In the third step we combine all intervals to ag&rresult. The combination algorithm is

as following:
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1. Initialize IntervalsList « @
2. For each [i1,..i2] in Results
2.1.If IntervalsList contains Interval such thdnterval.union n [il..i2] = @
2 1.1interval.union « Interval. union v [il...i2]
2.1.2Interval. intersection « Interval.intersection N [il...i2]

2 1.3Interval. count « Interval.count + 1

2.2.Else

2.2.1.

3.

4. [a..b] = The search of pattern in Intmax.Intersecti

5. Return [a..b]

The combination algorithm is based on the factctmpus is significantly longer than the
pattern. We assume that given an interval retumecdompare it to all other intervals
returned by other searches. If two intervals irgetrshey are considered to be the same
interval that is shifted. If an interval does notersect with others it is considered new.
The algorithm tries to unify all intervals and ctsithe number of intervals joined in each
union and we expect for only one interval to bented significant number of times and
classify all others as noise. We then search #gnient back in the interval to return the

final result.
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4.4 Testing

The testing was made on several outputs of an O@¥Rerm operated on Genizah
fragments. The input was as described in the pusvichapter, where the number of

iterations was 20 and the sub-pattern length wa3B@ minimum accuracy, under which

characters were omitted, was set to 0.5.

Original Text OCR result OCR output | Algorithm Best Match
with prob > Output
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Table 6: The algorithm results for several fragmefihe columns show the original text,

the text as transcripted by the OCR, the transefipt the character
omission, the algorithm results and the best aditidce match of the string
to the corpus.

As seen in Table 6, the algorithm presents gooditeeand approximates the original
fragment well for reasonable OCR performance. ®wilts are similar to the best edit
distance matching. For extremely noisy OCR outfhg, results are not accurate, since

edit distance cannot be a good approximation ferésult and other methods need to ne

applied.
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CHAPTER 5
CONCLUSIONS AND FURTHER RESEARCH

5.1 Conclusions

The thesis presented methods for three slightlferiht but connected problems. A
statistical algorithm for language classificatioi Hebrew script documents was
presented, using bigram distributions. The algorighowed over 95% accuracy for most
of the documents, rising to perfect 100% perforreaon documents longer than 800
characters. It also showed a method for higherigicetthe error rate by allowing the
classification algorithm to return an unknown résul

An algorithm for segmenting multilingual docunterio monolingual fragments was
introduced, reaching about 90% percent accurac§0fi200 character length language
shifts. The accuracy for more frequent languagéisshias about 70%. Several methods
were presented and compared for generalizing thbad¢o handle noisy texts.
Finally, a heuristic filter algorithm for approxit@astring matching was described. It
showed good accuracy results, running significaféigter than classic edit distance

algorithms.

5.2 Further research

While the language classification problem has wveslablished methods, the language
segmentation has many open questions. The algoptbposed was extremely sensitive
to the language shift rate, so a method for apprating this rate can significantly
increase performance by smarter parameter tuningpth®r method for increasing

performance can be a machine learning approagbaf@meter estimation, a method that

5¢



was not tried thoroughly enough in this work. Afeliént direction can be revise the shift
smoothing process, by trying different way thainty constant shift points.

The probabilistic approximate search algorithm se&n be further tested on larger

datasets, with patterns of various lengths andenaites. A more accurate selection of the
sub-patterns can be considered. Another directaonbe an OCR ad hoc tuning such as
considering specific substitution matrixes and errates and test the change in

performance.
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Appendix 1 — collected corpora

English name

Hebrew name

Language
Targum Onkelus, Targurnnkelus 17PN DN Aramaic
Jerusalem Talmud, Talmud Yerushalm nAWTY TMPN Aramaic
Torah, Pentateuch, Five books of Mose| O LA Hebrew
Mishnah mwn Hebrew

The Guide for the Perplexed, Moreh D212 7 Judeo-Arabic

Nevukhinr
Kozari

"mn

Judeo-Arabic

Maspik Ovdei Hashem, A Comprehensi
Guide for the Servants of G

Qwn >72WY P°0ona

Judeo-Arabic

Ibn Ezra Commentaries (short and long

TIXP) AN ARTRA RITY AR

(7o

Hebrew

Abarbanel Commenaries

T10% WD ,9IR212N

Hebrew
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